1
|
Li J, Chen F, Zhang D, Wang Y, Kozak D, Chen K. An Accurate and Fast 31P qNMR Assay Method for Oligonucleotide Therapeutics. Anal Chem 2024; 96:16514-16519. [PMID: 39392205 DOI: 10.1021/acs.analchem.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced 31P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1-5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The 31P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the 31P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Deyi Zhang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yan Wang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Darby Kozak
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Rentel C, Gaus H, Bradley K, Luu N, Kolkey K, Mai B, Madsen M, Pearce M, Bock B, Capaldi D. Assay, Purity, and Impurity Profile of Phosphorothioate Oligonucleotide Therapeutics by Ion Pair-High-Performance Liquid Chromatography-Mass Spectrometry. Nucleic Acid Ther 2022; 32:206-220. [PMID: 35238617 DOI: 10.1089/nat.2021.0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relatively large molecular size, diastereoisomeric nature, and complex impurity profiles of therapeutic phosphorothioate oligonucleotides create significant analytical challenges for the quality control laboratory. To overcome the lack of selectivity inherent to traditional chromatographic approaches, an ion pair liquid chromatography-mass spectrometry (LCMS) method combining ultraviolet and mass spectrometry quantification was developed and validated for >35 different oligonucleotide drug substances and products, including several commercialized drugs. The selection of chromatographic and spectrometric conditions, data acquisition and processing, critical aspects of sample and buffer preparation and instrument maintenance, and results from method validation experiments are discussed.
Collapse
Affiliation(s)
- Claus Rentel
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Hans Gaus
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Kym Bradley
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Nhuy Luu
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Kimmy Kolkey
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Bao Mai
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Mark Madsen
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Megan Pearce
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Brandon Bock
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Daniel Capaldi
- Analytical Development Quality Control, Ionis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
3
|
Roussis SG, Cedillo I, Rentel C. Characterizing the Diastereoisomeric Distribution of Phosphorothioate Oligonucleotides by Metal Ion Complexation Chromatography, In-Series Reversed Phase-Strong Anion Exchange Chromatography, and 31P NMR. Anal Chem 2021; 93:16035-16042. [PMID: 34813705 DOI: 10.1021/acs.analchem.1c03593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replacement of a non-bridging oxygen atom of the phosphate diester linkage of an oligonucleotide by sulfur conveys pharmacokinetic benefits, such as increased nuclease resistance and enhanced protein binding. Substitution renders the internucleotide linkages chiral, and so phosphorothioate diester (PS) oligonucleotides comprise complex mixtures of diastereoisomers. Currently, chromatographic separation of individual diastereoisomers is limited to oligonucleotides that contain no more than about four or five PS linkages. The development of therapeutic PS oligonucleotides, which often contain >15 PS linkages, would be greatly aided by methods useful for assessing batch-to-batch stereo-reproducibility. To this effect, the relative sensitivities of metal ion complexation chromatography (MICC), in-series reversed phase-strong anion exchange chromatography (RP-SAX), and 31P NMR toward changes in the diastereoisomeric distributions of therapeutic PS oligonucleotides were compared. Model oligonucleotides synthesized under conditions known to impact PS stereochemistry were used to evaluate the method performance, and all three methods showed excellent sensitivity toward changes in the diastereoisomeric composition. Interactions via the solvent-accessible areas and a combination of hydrophobic and electrostatic forces may be responsible for the selectivity demonstrated by MICC and in-series RP-SAX, respectively.
Collapse
Affiliation(s)
- Stilianos G Roussis
- Ionis Pharmaceuticals, 2855 Gazelle Ct., Carlsbad, California 92010, United States
| | - Isaiah Cedillo
- Ionis Pharmaceuticals, 2855 Gazelle Ct., Carlsbad, California 92010, United States
| | - Claus Rentel
- Ionis Pharmaceuticals, 2855 Gazelle Ct., Carlsbad, California 92010, United States
| |
Collapse
|
4
|
Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr A 2021; 1651:462283. [PMID: 34107400 DOI: 10.1016/j.chroma.2021.462283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
The number of RNA-based therapeutics has significantly grown in number on the market over the last 20 years. This number is expected to further increase in the coming years as many RNA therapeutics are being tested in late clinical trials stages. The first part of this paper considers the mechanism of action, the synthesis and the potential impurities resulting from synthesis as well as the strategies used to increase RNA-based therapeutics efficacy. In the second part of this review, the tests that are usually performed in the pharmaceutical industry for the quality testing of antisense oligonucleotides (ASOs), small-interfering RNAs (siRNAs) and messenger RNAs (mRNAs) will be described. In the last part, the remaining challenges and the ongoing developments to meet them are discussed.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, CHU, B36, Liege 4000, Belgium.
| |
Collapse
|
5
|
Bianga J, Perez M, Mouvet D, Cajot C, De Raeve P, Delobel A. Development of an ICP-MS/MS approach for absolute quantification and determination of phosphodiester to phosphorothioate ratio in therapeutic oligonucleotides. J Pharm Biomed Anal 2020; 184:113179. [PMID: 32092633 DOI: 10.1016/j.jpba.2020.113179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
A new analytical method based on ICP-MS/MS is proposed for the characterization of synthetic phosphorothioate oligonucleotides. Absolute quantification of oligonucleotides is challenging, as well as the determination of phosphodiester to phosphorothioate ratio for phosphorothioate oligonucleotides. Both are considered as critical quality attributes and should be determined using robust validated methods. The method we developed was designed to be easy to apply, fast, and robust. It allows simultaneous absolute quantification of an oligonucleotide (based on the quantification of phosphorus), determination of the phosphodiester to phosphorothioate ratio (based on the quantification of phosphorus and sulfur) and optionally determination of sodium (or any other metal) as a counter ion. The performance of the method was demonstrated on O,O-diethyl thiophosphate potassium salt, a well characterized model substance that possesses similar composition to phosphorothioate oligonucleotides. Method was also tested on different synthetic phophorothioate oligonucleotides, showing excellent accuracy and precision.
Collapse
Affiliation(s)
- Juliusz Bianga
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Magali Perez
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Damien Mouvet
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Caroline Cajot
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Philippe De Raeve
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium.
| |
Collapse
|
6
|
Zhao H, Liu L, Peng S, Yuan L, Li H, Wang H. Heterologous Expression of Argininosuccinate Synthase From Oenococcus oeni Enhances the Acid Resistance of Lactobacillus plantarum. Front Microbiol 2019; 10:1393. [PMID: 31293541 PMCID: PMC6598401 DOI: 10.3389/fmicb.2019.01393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Oenococcus oeni can survive well in wine (an acid-stress environment) and dominate malolactic fermentation (MLF). To demonstrate a possible role of argininosuccinate synthase gene (argG) in the acid tolerance response of O. oeni, a related argG gene was inserted into a plasmid pMG36e and heterologously expressed in Lactobacillus plantarum SL09, a wine isolate belonging to a species of relevant importance in MLF. The expression levels of the argG gene in L. plantarum were analyzed by RT-qPCR, argininosuccinate synthase (ASS) activity and cell properties (amino acids, pH, H+-ATPase activity, and ATP levels) were determined at pH 3.7 in comparison with that at pH 6.3. Results showed that the recombinant strain L. plantarum SL09 (pMG36eargG) exhibited stronger growth performance compared with the control strain (without argG gene), and the expression levels of hsp1, cfa, atp, the citrate and malate metabolic genes were apparently increased under acid stress. In addition, the recombinant strain exhibited 11.0-, 2.0-, 1.9-fold higher ASS activity, H+-ATPase activity and intracellular ATP level, compared with the corresponding values for control strain during acid-stresses condition, which may take responsible for the acid tolerance enhancement of the recombinant strain. This is the first work report on heterologous expression of argG gene, and the results presented in this study will be beneficial for the research on acid stress response of O. oeni.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Enology, Northwest A&F University, Yangling, China
| | - Longxiang Liu
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, Binzhou, China
| | - Shuai Peng
- College of Enology, Northwest A&F University, Yangling, China
| | - Lin Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Weinan, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China.,Heyang Experimental and Demonstrational Stations for Grape, Weinan, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
7
|
Abstract
BACKGROUND The non-receptor spleen tyrosine kinase (Syk; EC 2.7.10.2) is involved in signal transduction in a variety of cell types. In particular, it is a key mediator of immune receptors signaling in host inflammatory cells (B cells, mast cells, macrophages and neutrophils), important for both allergic and antibody-mediated autoimmune diseases. Deregulated Syk kinase activity also allows growth factor-independent proliferation and transforms bone marrow-derived pre-B cells that are able to induce leukemia. Consequently, the development of Syk kinase inhibitors could conceivably treat these disorders and so they have became a major focus in the pharmaceutical and biotech industry. OBJECTIVE In this review, we analyze the structure and role of Syk kinase, the use of small molecules, interacting with ATP-binding site, as inhibitors of kinase activity and finally the potential of using inhibitors of Syk kinase expression to attenuate pathological conditions. CONCLUSION Syk kinase inhibition is suggested as a powerful tool for the therapy of different pathologies.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padova Unit, c/o Dept. Chemical Sciences, University of Padova, via Marzolo 1, Padua, Italy.
| | | | | |
Collapse
|
8
|
Capaldi DC, Gaus HJ, Carty RL, Moore MN, Turney BJ, Decottignies SD, McArdle JV, Scozzari AN, Ravikumar VT, Krotz AH. Formation of 4,4'-dimethoxytrityl-C-phosphonate oligonucleotides. Bioorg Med Chem Lett 2005; 14:4683-90. [PMID: 15324888 DOI: 10.1016/j.bmcl.2004.06.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 06/28/2004] [Indexed: 11/18/2022]
Abstract
Incomplete sulfurization during solid-phase synthesis of phosphorothioate oligonucleotides using phosphoramidite chemistry was identified as the cause of formation of two new classes of process-related oligonucleotide impurities containing a DMTr-C-phosphonate (DMTr=4,4'-dimethoxytrityl) moiety. Phosphite triester intermediates that failed to oxidize (sulfurize) to the corresponding phosphorothioate triester react during the subsequent acid-induced (dichloroacetic acid) detritylation with the DMTr cation or its equivalent in an Arbuzov-type reaction. This leads to formation of DMTr-C-phosphonate mono- and diesters resulting in oligonucleotides modified with a DMTr-C-phosphonate moiety located internally or at the 5'terminal hydroxy group. DMTr-C-phosphonate derivatives are not detected when optimized sulfurization conditions are employed.
Collapse
Affiliation(s)
- Daniel C Capaldi
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, CA 92008, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuhnast B, de Bruin B, Hinnen F, Tavitian B, Dollé F. Design and synthesis of a new [18F]fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide. Bioconjug Chem 2004; 15:617-27. [PMID: 15149190 DOI: 10.1021/bc049979u] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the recently highlighted potential of nucleophilic heteroaromatic ortho-radiofluorinations in the preparation of fluorine-18-labeled radiotracers and radiopharmaceuticals for PET, a [(18)F]fluoropyridine-based bromoacetamide reagent has been prepared and used in prosthetic group introduction for the labeling of oligonucleotides. [(18)F]FPyBrA (2-bromo-N-[3-(2-[(18)F]fluoropyridin-3-yloxy)propyl]acetamide) was designed as a radiochemically feasible reagent, its pyridinyl moiety both carrying the radioactive halogen (fluorine-18) and allowing its efficient incorporation via a nucleophilic heteroaromatic substitution, and its 2-bromoacetamide function, ensuring the efficient alkylation of a phosphorothioate monoester group born at the 3'- or 5'-end of single-stranded oligonucleotides. [(18)F]FPyBrA (HPLC-purified) was efficiently prepared in 18-20% non-decay-corrected yield (based on starting [(18)F]fluoride) using a three-step radiochemical pathway in 80-85 min. The developed procedure involves (1) a high-yield nucleophilic heteroaromatic ortho-radiofluorination as the fluorine-18 incorporation-step (70-85% radiochemical yield) and uses [3-(3-tert-butoxycarbonylaminopropoxy)pyridin-2-yl]trimethylammonium trifluoromethanesulfonate as precursor for labeling, followed by (2) rapid and quantitative TFA-removal of the N-Boc-protective group and (3) condensation with 2-bromoacetyl bromide (45-65% radiochemical yield). Typically, 3.3-3.7 GBq (90-100 mCi) of HPLC-purified [(18)F]FPyBrA could be obtained in 80-85 min, starting from 18.5 GBq (500 mCi) of a cyclotron production batch of [(18)F]fluoride. [(18)F]FPyBrA was regioselectively conjugated with 9-mer and 18-mer single-stranded oligonucleotides, provided with a phosphorothioate monoester group at their 3'-end. Both natural phosphodiester DNAs and in vivo-stable 2'-methoxy and -fluoro-modified RNAs were used. Conjugation uses optimized, short-time reaction conditions (MeOH/0.1 M PBS pH 7.4, 15 min, 120 degrees C), both compatible with the chemical stability of the oligonucleotides (ONs) and the half-life of fluorine-18. Conjugated [(18)F]ONs were finally purified by RP-HPLC and desalted using a Sephadex NAP-10 column. The whole radiosynthetic procedure, including the preparation of the fluorine-18-labeled reagent, the conjugation with the oligonucleotide, and the HPLC purification and formulation lasted 140-160 min. [(18)F]FPyBrA represents a valuable alternative to the already reported N-(4-[(18)F]fluorobenzyl)-2-bromoacetamide for the design and development of oligonucleotide-based radiopharmaceuticals for PET.
Collapse
Affiliation(s)
- Bertrand Kuhnast
- Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, CEA/DSV, 4 place du Général Leclerc, F-91401 Orsay, France
| | | | | | | | | |
Collapse
|
10
|
Ravikumar VT, Kumar RK. Stereoselective Synthesis of Alkylphosphonates: A Facile Rearrangement of Cyanoethyl-Protected Nucleoside Phosphoramidites. Org Process Res Dev 2004. [DOI: 10.1021/op030035u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - R. Krishna Kumar
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008, U.S.A
| |
Collapse
|
11
|
Maurer N, Wong KF, Stark H, Louie L, McIntosh D, Wong T, Scherrer P, Semple SC, Cullis PR. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J 2001; 80:2310-26. [PMID: 11325732 PMCID: PMC1301421 DOI: 10.1016/s0006-3495(01)76202-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs.
Collapse
Affiliation(s)
- N Maurer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haller H, Maasch C, Dragun D, Wellner M, von Janta-Lipinski M, Luft FC. Antisense oligodesoxynucleotide strategies in renal and cardiovascular disease. Kidney Int 1998; 53:1550-8. [PMID: 9607185 DOI: 10.1046/j.1523-1755.1998.00927.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antisense oligodesoxynucleotides (ODN) provide a novel strategy to inhibit RNA transcription and thereby the synthesis of the gene product. Because antisense ODN hybridize with the mRNA strand, they are highly specific. Their backbone structure has been modified to phosphorothioates or phosphoamidates so that they can better withstand degradation after delivery. We have shown that antisense ODN are a useful research tool to elucidate intracellular processes. The example we provide involves the inhibition of PKC signaling. Furthermore, we have shown the potential clinical utility of antisense treatment. We successfully inhibited the expression of the surface adhesion molecule ICAM-1 with antisense ODN in a model of reperfusion injury. This model is highly applicable to the problem of delayed graft function in humans. However, "getting there" is a major problem and clearly less than half the fun. Cationic substances such as lipofectin have worked sufficiently well in the experimental setting. Viral gene transfer offers a possibility; however, viruses produce an additional series of problems. Liposomes may not provide sufficient transfer efficiency. Coating liposomes with viral fusion proteins may offer an ideal way with which to deliver the goods into the cytoplasm of the target cell.
Collapse
Affiliation(s)
- H Haller
- Franz Volhard Clinic, Max Delbrück Center for Molecular Medicine, Virchow Klinikum-Charité Humboldt University of Berlin, Germany.
| | | | | | | | | | | |
Collapse
|