1
|
Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy JW, Lopez AP, Benleulmi MS, Calmels C, Andreola ML, Ruff M, Llano M, Delelis O, Lavigne M, Parissi V. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology 2017; 14:39. [PMID: 28754126 PMCID: PMC5534098 DOI: 10.1186/s12977-017-0363-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023] Open
Abstract
Background Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Results Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Conclusions Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0363-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Matysiak
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Paul Lesbats
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Eric Mauro
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France
| | - Delphine Lapaillerie
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Jean-William Dupuy
- Centre Génomique fonctionnelle Bordeaux, Plateforme Proteome, Université de Bordeaux, Bordeaux, France
| | - Angelica P Lopez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed Salah Benleulmi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Christina Calmels
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marie-Line Andreola
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Ruff
- Département de Biologie Structurale Intégrative, UDS, U596 INSERM, UMR7104 CNRS, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch-Graffenstaden, France
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Olivier Delelis
- LBPA, UMR8113, CNRS, ENS-Cachan, Cachan, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marc Lavigne
- Department of Virology, UMR 3569, CNRS, Institut Pasteur, Paris, France.,Institut Cochin-INSERM U1016-CNRS UMR8104, Université Paris Descartes, Paris, France.,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Vincent Parissi
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS, University of Bordeaux, SFR TransBioMed, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,International Associated Laboratory (LIA) of Microbiology and Immunology, CNRS/University de Bordeaux/Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Bordeaux, France. .,Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France.
| |
Collapse
|
2
|
Voges M, Schneider C, Sinn M, Hartig JS, Reimer R, Hauber J, Moelling K. Abolishing HIV-1 infectivity using a polypurine tract-specific G-quadruplex-forming oligonucleotide. BMC Infect Dis 2016; 16:358. [PMID: 27450669 PMCID: PMC4957839 DOI: 10.1186/s12879-016-1713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/12/2016] [Indexed: 02/04/2023] Open
Abstract
Background HIV is primarily transmitted by sexual intercourse and predominantly infects people in Third World countries. Here an important medical need is self-protection for women, particularly in societies where condoms are not widely accepted. Therefore, availability of antiviral microbicides may significantly reduce sexual HIV transmission in such environments. Methods Here, we investigated structural characteristics and the antiviral activity of the polypurine tract (PPT)-specific ODN A, a 54-mer oligodeoxynucleotide (ODN) that has been previously shown to trigger the destruction of viral RNA genomes by prematurely activating the retroviral RNase H. The stability of ODN A and mutants thereof was tested at various storage conditions. Furthermore, antiviral effects of ODN A were analyzed in various tissue culture HIV-1 infection models. Finally, circular dichroism spectroscopy was employed to gain insight into the structure of ODN A. Results We show here that ODN A is a powerful tool to abolish HIV-1 particle infectivity, as required for a candidate compound in vaginal microbicide applications. We demonstrate that ODN A is not only capable to prematurely activate the retroviral RNase H, but also prevents HIV-1 from entering host cells. ODN A also exhibited extraordinary stability lasting several weeks. Notably, ODN A is biologically active under various storage conditions, as well as in the presence of carboxymethylcellulose CMC (K-Y Jelly), a potential carrier for application as a vaginal microbicide. ODN A’s remarkable thermostability is apparently due to its specific, guanosine-rich sequence. Interestingly, these residues can form G-quadruplexes and may lead to G-based DNA hyperstructures. Importantly, the pronounced antiviral activity of ODN A is maintained in the presence of human semen or semen-derived enhancer of virus infection (SEVI; i.e. amyloid fibrils), both known to enhance HIV infectivity and reduce the efficacy of some antiviral microbicides. Conclusions Since ODN A efficiently inactivates HIV-1 and also displays high stability and resistance against semen, it combines unique and promising features for its further development as a vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Maike Voges
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Joachim Hauber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany. .,German Center for Infection Research (DZIF), partner site, Hamburg, Germany.
| | - Karin Moelling
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.,Institute of Medical Virology, University of Zurich, Gloriastrasse 32, 8006, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| |
Collapse
|
3
|
Musumeci D, Riccardi C, Montesarchio D. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molecules 2015; 20:17511-32. [PMID: 26402662 PMCID: PMC6332060 DOI: 10.3390/molecules200917511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| |
Collapse
|
4
|
Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2015; 42:847-65. [PMID: 26258445 PMCID: PMC5022137 DOI: 10.3109/1040841x.2015.1070115] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed.
Collapse
Affiliation(s)
- Anna Davydova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Maria Vorobjeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Dmitrii Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Sidney Altman
- b Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Valentin Vlassov
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Alya Venyaminova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| |
Collapse
|
5
|
Pescatori L, Métifiot M, Chung S, Masoaka T, Cuzzucoli Crucitti G, Messore A, Pupo G, Madia VN, Saccoliti F, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SFJ, Pommier Y, Marchand C, Costi R, Di Santo R. N-Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase. J Med Chem 2015; 58:4610-23. [PMID: 25961960 DOI: 10.1021/acs.jmedchem.5b00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bifunctional quinolinonyl DKA derivatives were first described as nonselective inhibitors of 3'-processing (3'-P) and strand transfer (ST) functions of HIV-1 integrase (IN), while 7-aminosubstituted quinolinonyl derivatives were proven IN strand transfer inhibitors (INSTIs) that also displayed activity against ribonuclease H (RNase H). In this study, we describe the design, synthesis, and biological evaluation of new quinolinonyl diketo acid (DKA) derivatives characterized by variously substituted alkylating groups on the nitrogen atom of the quinolinone ring. Removal of the second DKA branch of bifunctional DKAs, and the amino group in position 7 of quinolinone ring combined with a fine-tuning of the substituents on the benzyl group in position 1 of the quinolinone, increased selectivity for IN ST activity. In vitro, the most potent compound was 11j (IC50 = 10 nM), while the most active compounds against HIV infected cells were ester derivatives 10j and 10l. In general, the activity against RNase H was negligible, with only a few compounds active at concentrations higher than 10 μM. The binding mode of the most potent IN inhibitor 11j within the IN catalytic core domain (CCD) is described as well as its binding mode within the RNase H catalytic site to rationalize its selectivity.
Collapse
Affiliation(s)
- Luca Pescatori
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Mathieu Métifiot
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Suhman Chung
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Takashi Masoaka
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Giuliana Cuzzucoli Crucitti
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Antonella Messore
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Giovanni Pupo
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Valentina Noemi Madia
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Francesco Saccoliti
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Luigi Scipione
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Silvano Tortorella
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Francesco Saverio Di Leva
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- ⊥DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Stuart F J Le Grice
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Yves Pommier
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Christophe Marchand
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Roberta Costi
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Roberto Di Santo
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| |
Collapse
|
6
|
Métifiot M, Amrane S, Litvak S, Andreola ML. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 2014; 42:12352-66. [PMID: 25332402 PMCID: PMC4227801 DOI: 10.1093/nar/gku999] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300,000 sequences that can potentially form G4s. Likewise, the presence of putative G4-sequences has been reported in various viruses genomes [e.g., Human immunodeficiency virus (HIV-1), Epstein-Barr virus (EBV), papillomavirus (HPV)]. Many studies have focused on telomeric G4s and how their dynamics are regulated to enable telomere synthesis. Moreover, a role for G4s has been proposed in cellular and viral replication, recombination and gene expression control. In parallel, DNA aptamers that form G4s have been described as inhibitors and diagnostic tools to detect viruses [e.g., hepatitis A virus (HAV), EBV, cauliflower mosaic virus (CaMV), severe acute respiratory syndrome virus (SARS), simian virus 40 (SV40)]. Here, special emphasis will be given to the possible role of these structures in a virus life cycle as well as the use of G4-forming oligonucleotides as potential antiviral agents and innovative tools.
Collapse
Affiliation(s)
- Mathieu Métifiot
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Samir Amrane
- INSERM, U869, IECB, ARNA laboratory, Université de Bordeaux, 2 Rue Robert Escarpit 33600 Pessac, France
| | - Simon Litvak
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marie-Line Andreola
- CNRS UMR-5234, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
7
|
Costi R, Métifiot M, Chung S, Cuzzucoli Crucitti G, Maddali K, Pescatori L, Messore A, Madia VN, Pupo G, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SFJ, Corona A, Pommier Y, Marchand C, Di Santo R. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J Med Chem 2014; 57:3223-34. [PMID: 24684270 PMCID: PMC4203401 DOI: 10.1021/jm5001503] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
A series
of antiviral basic quinolinonyl diketo acid derivatives
were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of
magnitude selectivity over 3′-processing. These strand transfer
selective inhibitors also inhibited HIV-1 RNase H with low micromolar
potencies. Molecular modeling studies based on both the HIV-1 IN and
RNase H catalytic core domains provided new structural insights for
the future development of these compounds as dual HIV-1 IN and RNase
H inhibitors.
Collapse
Affiliation(s)
- Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , P.le Aldo Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Costi R, Métifiot M, Esposito F, Cuzzucoli Crucitti G, Pescatori L, Messore A, Scipione L, Tortorella S, Zinzula L, Novellino E, Pommier Y, Tramontano E, Marchand C, Di Santo R. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach. J Med Chem 2013; 56:8588-98. [PMID: 24124919 DOI: 10.1021/jm401040b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.
Collapse
Affiliation(s)
- Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , P. le Aldo Moro 5, Rome I-00185, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stimulation of the human RAD51 nucleofilament restricts HIV-1 integration in vitro and in infected cells. J Virol 2011; 86:513-26. [PMID: 22013044 DOI: 10.1128/jvi.05425-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN. Our standard in vitro integration assays performed under various conditions promoting or inhibiting hRAD51 activity demonstrated that the formation of an active hRAD51 nucleofilament is required for optimal inhibition involving an IN-DNA complex dissociation mechanism. Furthermore we show that this inhibition mechanism can be promoted in HIV-1-infected cells by chemical stimulation of the endogenous hRAD51 protein. This hRAD51 stimulation induced both an enhancement of the endogenous DNA repair process and the inhibition of the integration step. Elucidation of this molecular mechanism leading to the restriction of viral proliferation paves the way to a new concept of antiretroviral therapy based on the enhancement of endogenous hRAD51 recombination activity and highlights the functional interaction between HIV-1 IN and hRAD51.
Collapse
|
10
|
Faure-Perraud A, Métifiot M, Reigadas S, Recordon-Pinson P, Parissi V, Ventura M, Andréola ML. The guanine-quadruplex aptamer 93del inhibits HIV-1 replication ex vivo by interfering with viral entry, reverse transcription and integration. Antivir Ther 2011; 16:383-94. [PMID: 21555821 DOI: 10.3851/imp1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND We have previously identified the guanine-rich oligonucleotide (ODN) 93del as a potent inhibitor in vitro of HIV-1 integrase. Moreover, low nanomolar concentrations of ODN 93del have been shown to inhibit HIV-1 replication in infected cells. METHODS To investigate the ex vivo mechanism of ODN 93del inhibition, we analysed its antiviral effects on the early steps of HIV-1 replication such as viral entry, reverse transcription and integration using quantitative PCR. RESULTS In addition to the effect on viral entry previously described for other guanine-quadruplex ODNs, transfection experiments showed that ODN 93del severely affects the proviral integration step independently of the effect on viral entry. Moreover, incubation of viral particles with ODN 93del revealed a potential microbicide activity of the aptamer. CONCLUSIONS Our data point to an original multimodal inhibition of HIV-1 replication by ODN 93del, strongly suggesting that targets of guanine-quartet-forming ODNs involve entry as well as other intracellular early steps of HIV-1 replication.
Collapse
|
11
|
Métifiot M, Maddali K, Naumova A, Zhang X, Marchand C, Pommier Y. Biochemical and pharmacological analyses of HIV-1 integrase flexible loop mutants resistant to raltegravir. Biochemistry 2010; 49:3715-22. [PMID: 20334344 DOI: 10.1021/bi100130f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance to raltegravir (RAL), the first HIV-1 integrase (IN) inhibitor approved by the FDA, involves three genetic pathways: IN mutations N155H, Q148H/R/K, and Y143H/R/C. Those mutations are generally associated with secondary point mutations. The resulting mutant viruses show a high degree of resistance against RAL but somehow are affected in their replication capacity. Clinical and virological data indicate the high relevance of the combination G140S + Q148H because of its limited impact on HIV replication and very high resistance to RAL. Here, we report how mutations at the amino acid residues 140, 148, and 155 affect IN enzymatic activity and RAL resistance. We show that single mutations at position 140 have limited impact on 3'-processing (3'-P) but severely inactivate strand transfer (ST). On the other hand, single mutations at position 148 have a more profound effect and inactivate both 3'-P and ST. By examining systematically all of the double mutants at the 140 and 148 positions, we demonstrate that only the combination G140S + Q148H is able to restore the catalytic properties of IN. This rescue only operates in cis when both the 140S and 148H mutations are in the same IN polypeptide flexible loop. Finally, we show that the G140S-Q148H double mutant exhibits the highest resistance to RAL. It also confers cross-resistance to elvitegravir but less to G-quadraduplex inhibitors such as zintevir. Our results demonstrate that IN mutations at positions 140 and 148 in the IN flexible loop can account for the phenotype of RAL-resistant viruses.
Collapse
Affiliation(s)
- Mathieu Métifiot
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
12
|
Marchand C, Maddali K, Métifiot M, Pommier Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr Top Med Chem 2010; 9:1016-37. [PMID: 19747122 DOI: 10.2174/156802609789630910] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 06/13/2009] [Indexed: 12/29/2022]
Abstract
Integrase (IN) is the newest validated target against AIDS and retroviral infections. The remarkable activity of raltegravir (Isentress((R))) led to its rapid approval by the FDA in 2007 as the first IN inhibitor. Several other IN strand transfer inhibitors (STIs) are in development with the primary goal to overcome resistance due to the rapid occurrence of IN mutations in raltegravir-treated patients. Thus, many scientists and drug companies are actively pursuing clinically useful IN inhibitors. The objective of this review is to provide an update on the IN inhibitors reported in the last two years, including second generation STI, recently developed hydroxylated aromatics, natural products, peptide, antibody and oligonucleotide inhibitors. Additionally, the targeting of IN cofactors such as LEDGF and Vpr will be discussed as novel strategies for the treatment of AIDS.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Buzder T, Yin X, Wang X, Banfalvi G, Basnakian AG. Uptake of foreign nucleic acids in kidney tubular epithelial cells deficient in proapoptotic endonucleases. DNA Cell Biol 2009; 28:435-42. [PMID: 19558214 DOI: 10.1089/dna.2008.0850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Degradation of DNA during gene delivery is an obstacle for gene transfer and for gene therapy. DNases play a major role in degrading foreign DNA. However, which of the DNases are involved and whether their inactivation can improve gene delivery have not been studied. We have recently identified deoxyribonuclease I (DNase I) and endonuclease G (EndoG) as the major degradative enzymes in the mouse kidney proximal tubule epithelial (TKPTS) cells. In this study, we used immortalized mouse TKPTS cells and primary tubular epithelial cells isolated from DNase I or EndoG knockout (KO) mice and examined the degradation of plasmid DNA during its uptake. DNase I and EndoG KO cells showed a higher rate of transfection by pECFP-N1 plasmid than wild-type cells. In addition, EndoG KO cells prevented the uptake of fluorescent-labeled RNA. Complete inhibition of secreted DNase I by G-actin did not improve plasmid transfection, indicating that only intracellular DNase I affects DNA stability. Data demonstrate the importance of DNase I and EndoG in host cell defense against gene and RNA delivery to renal tubular epithelial cells in vitro.
Collapse
Affiliation(s)
- Timea Buzder
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
14
|
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18:133-44. [PMID: 18637731 DOI: 10.1089/oli.2008.0103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primer-template-based double-stranded nucleic acids capable of binding human immunodeficiency virus reverse transcriptase (HIV-RT) with high affinity were used as starting material to develop small single-stranded loop-back DNA aptamers. The original primer-templates were selected using a SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach and consisted of 46- and 50-nt primer and template strands, respectively. The major determinant of the approximately 10-fold tighter binding in selected sequences relative to control primer-templates was a run of 6.8 G residues at the 3' primer end. Sixty, thirty-seven, twenty-seven, and twenty-two nucleotide loop-back single-stranded versions that retained the base pairs near the 3' primer terminus were constructed. Both the 60- and 37-nt versions retained high affinity for RT with K(d) values of approximately 0.44 nM and 0.66 nM, respectively. Random sequence primer-templates of the same length had K(d)s of approximately 20 nM and approximately 161 nM. The shorter 27- and 22-nt aptamers bound with reduced affinity. Several modifications of the 37-nt aptamer were also tested including changes to the terminal 3' G nucleotide and internal bases in the G run, replacement of specific nucleotides with phosphothioates, and alterations to the 5' overhang. Optimal binding required a 4- to 5-nt overhang, and internal changes within the G run had a pronounced negative effect on binding. Phosphothioate nucleotides or the presence of a 3' dideoxy G residue did not alter affinity. The 37-nt aptamer was a potent inhibitor of HIV-RT in vitro and functioned by blocking binding of other primer-templates.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|