1
|
Davydova AS, Timoshenko VV, Lomzov AA, Pyshnyi DV, Venyaminova AG, Vorobyeva MA. G-quadruplex 2'-F-modified RNA aptamers targeting hemoglobin: Structure studies and colorimetric assays. Anal Biochem 2020; 611:113886. [PMID: 32795455 DOI: 10.1016/j.ab.2020.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Biosensors that rely on aptamers as analyte-recognizing elements (also known as aptasensors) are gaining in popularity during recent years for analytical and biomedical applications. Among them, colorimetric ELISA-like systems seem very promising for biomarker detection in medical diagnostics. For their development, one should thoroughly consider the characteristics of the aptamers, with a particular focus on the secondary structure. In this study, we performed an in-depth structural study of previously selected hemoglobin-binding 2'-F-RNA aptamers using CD spectroscopy, enzymatic probing, and specific fluorophore binding. Only a combination of different assays allowed us to prove G-quadruplex formation for anti-hemoglobin 2'-F-RNA aptamers. We also demonstrated a possible application of these 2'-F-RNA aptamers for microplate colorimetric detection of human hemoglobin in both direct and sandwich formats.
Collapse
Affiliation(s)
- Anna S Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.
| | | | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mariya A Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Park Y, Kim KT, Kim BH. G-Quadruplex formation using fluorescent oligonucleotides as a detection method for discriminating AGG trinucleotide repeats. Chem Commun (Camb) 2018; 52:12757-12760. [PMID: 27722273 DOI: 10.1039/c6cc06566j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed a simple and sensitive system for detecting AGG trinucleotide repeats through the formation of intermolecular G-quadruplexes using a fluorescent oligonucleotide. The fluorescence signal increased rapidly and dramatically by 44.7-fold with respect to the low background signal in the presence of RNA agg repeats and by 35.0-fold in the presence of DNA AGG repeats.
Collapse
Affiliation(s)
- Yoojin Park
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTEH), Pohang 37673, Republic of Korea.
| | - Ki Tae Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTEH), Pohang 37673, Republic of Korea.
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTEH), Pohang 37673, Republic of Korea.
| |
Collapse
|
3
|
Murakami K, Zhao J, Yamasaki K, Miyagishi M. Biochemical and structural features of extracellular vesicle-binding RNA aptamers. Biomed Rep 2017; 6:615-626. [PMID: 28584632 PMCID: PMC5449965 DOI: 10.3892/br.2017.899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles are particles in mammalian body fluids that have attracted considerable attention as biomarkers for various diseases. In the present study, the authors isolated RNA aptamers with an affinity for extracellular vesicles from two library pools that encoded randomized sequences of different lengths. After the several rounds of selection, two conserved motifs are identified in the sequences that are obtained by next-generation sequencing. Most of the sequences were predicted to adopt a secondary structure that consisted of a non-conserved stem structure and a conserved loop sequence. Two minimal similar sequences are synthesized and confirmed the ability of these sequences to bind to extracellular vesicles. Circular dichroism spectroscopy and melting temperature analysis demonstrated that the aptamers were able to form a G-quadruplex structure in their loop regions and these structures were stabilized by potassium ions. Consistent with these structural data, the affinity of each aptamer for extracellular vesicles was dependent on potassium ions. The aptamers that were identified may be useful molecular tools for the development of diagnostic methods that utilize body fluids, such as blood, saliva and urine.
Collapse
Affiliation(s)
- Kazuyoshi Murakami
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Jing Zhao
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Kazuhiko Yamasaki
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki 305-8566, Japan
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba-shi, Ibaraki 305-8566, Japan
| |
Collapse
|
4
|
Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat Commun 2015; 6:6280. [PMID: 25692975 DOI: 10.1038/ncomms7280] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/13/2015] [Indexed: 12/25/2022] Open
Abstract
Ligand stimulation of the Toll-like receptors (TLRs) triggers innate immune response, cytokine production and cellular immune activation in dendritic cells. However, most TLR ligands are microbial constituents, which cause inflammation and toxicity. Toxic response could be reduced for secure immunotherapy through the use of chemically synthesized ligands with defined functions. Here we create an RNA ligand for TLR3 with no ability to activate the RIG-I/MDA5 pathway. This TLR3 ligand is a chimeric molecule consisting of phosphorothioate ODN-guided dsRNA (sODN-dsRNA), which elicits far less cytokine production than poly(I:C) in vitro and in vivo. The activation of TLR3/TICAM-1 pathway by sODN-dsRNA effectively induces natural killer and cytotoxic T cells in tumour-loaded mice, thereby establishing antitumour immunity. Systemic cytokinemia does not occur following subcutaneous or even intraperitoneal administration of sODN-dsRNA, indicating that TICAM-1 signalling with minute local cytokines sufficiently activate dendritic cells to prime tumoricidal effectors in vivo.
Collapse
|
5
|
Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 2014; 42:10196-207. [PMID: 25081212 PMCID: PMC4150804 DOI: 10.1093/nar/gku710] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.
Collapse
Affiliation(s)
- Magdalena Malgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Institut de Chimie, Bat. B6c, Université de Liège, B-4000 Liège, Belgium Inserm, U869 ARNA Laboratory, F-33000 Bordeaux, France University of Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
6
|
Pandey S, Agarwala P, Maiti S. Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J Phys Chem B 2013; 117:6896-905. [PMID: 23683360 DOI: 10.1021/jp401739m] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The loop length, loop composition, salt concentration, and number of G-quartets are major determinants of G-quadruplex stability. We examined the effect of each of these factors on the thermal stability and folding topology of a library of RNA quadruplexes. The thermal stability of G2 and G3 RNA quadruplexes was investigated upon varying the loop length (from 1-1-1 to 15-15-15) and salt concentration (from 1 to 100 mM KCl), while the effect of loop composition was explored using 18 naturally occurring potential RNA quadruplexes predicted in untranslated regions (UTRs). We found loop length and quadruplex stability to be inversely related for G2 RNA quadruplexes and G3 RNA quadruplexes with shorter loops. However, melting temperature saturates for G3 RNA quadruplexes with longer loops. RNA G-quadruplexes with longer loops (G3 15-15-15) displayed Tm values significantly higher than the physiological temperature. This study thus highlights the need to modify the consensus motif presently used by quadruplex prediction tools. An increase in the loop size from 7 bases to 15 bases in the consensus motif will add to its predictive value for the discovery of potential RNA quadruplexes across transcriptomes.
Collapse
Affiliation(s)
- Satyaprakash Pandey
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
7
|
Abstract
This review summarizes the results of structural studies carried out with analogs of G-quadruplexes built from natural nucleotides. Several dozens of base-, sugar-, and phosphate derivatives of the biological building blocks have been incorporated into more than 50 potentially quadruplex forming DNA and RNA oligonucleotides and the stability and folding topology of the resultant intramolecular, bimolecular and tetramolecular architectures characterized. The TG4T, TG5T, the 15 nucleotide-long thrombin binding aptamer, and the human telomere repeat AG3(TTAG3)3 sequences were modified in most cases, and four guanine analogs can be noted as being particularly useful in structural studies. These are the fluorescent 2-aminopurine, the 8-bromo-, and 8-methylguanines, and the hypoxanthine. The latter three analogs stabilize a given fold in a mixture of structures making possible accurate structural determinations by circular dichroism and nuclear magnetic resonance measurements.
Collapse
Affiliation(s)
- Janos Sagi
- a Rimstone Laboratory , RLI, 29 Lancaster Way, Cheshire , CT , 06410 , USA
| |
Collapse
|
8
|
Mashima T, Nishikawa F, Kamatari YO, Fujiwara H, Saimura M, Nagata T, Kodaki T, Nishikawa S, Kuwata K, Katahira M. Anti-prion activity of an RNA aptamer and its structural basis. Nucleic Acids Res 2012. [PMID: 23180780 PMCID: PMC3553944 DOI: 10.1093/nar/gks1132] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrPC) of PrP into an abnormal form (PrPSc) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrPC is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrPSc level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrPC, resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases.
Collapse
Affiliation(s)
- Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2011; 40:11-26. [PMID: 21908410 PMCID: PMC3245940 DOI: 10.1093/nar/gkr729] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
Collapse
Affiliation(s)
- Wlodzimierz J Krzyzosiak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
10
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. Research Progress of RNA Quadruplex. Nucleic Acid Ther 2011; 21:185-200. [DOI: 10.1089/nat.2010.0272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohui Ji
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Huaxi Zhou
- Department of Systems Science, School of Management, Beijing Normal University, Beijing, China
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Changqi Zhao
- Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Ji X, Sun H, Zhou H, Xiang J, Tang Y, Zhao C. Research Progress of RNA Quadruplex. Oligonucleotides 2011:121102072334007. [PMID: 21574857 DOI: 10.1089/oli.2010.0272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA/DNA sequences rich in guanine (G) can form a 4-strand structure, G-quadruplex, which has been extensively researched and observed in mammalian, fungi, and plants, with in vivo existence in eukaryotic cells. Compared with DNA quadruplex, the potential existence of RNA quadruplex appears to be generally rare; however, it is believed by some researchers to be more inevitable in vivo and speculated to play an important role where it exists. Recently, researches concerning the function of G-quadruplexes in RNAs commence, making much progress. However, there is no available review particularly focusing on RNA quadruplex till now as we know. Therefore, we decide to give a review to comprehensively summarize research progress on it. This review highlights the diverse topologies for RNA quadruplex structure and its effect factors; outlines the current knowledge of RNA quadruplex's physiological functions in biological systems, especially in gene expression; and presents the prospects of RNA quadruplex.
Collapse
Affiliation(s)
- Xiaohui Ji
- 1 Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Key Laboratory of Gene Engineering Drugs and Biological Technology, College of Life Sciences, Beijing Normal University , Beijing, China
| | | | | | | | | | | |
Collapse
|
12
|
Xu Y, Yang X, Wang E. Review: Aptamers in microfluidic chips. Anal Chim Acta 2010; 683:12-20. [PMID: 21094377 DOI: 10.1016/j.aca.2010.10.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/13/2010] [Accepted: 10/03/2010] [Indexed: 01/07/2023]
Abstract
This review, covering reports published from 2002 to August 2010, shows how aptamers have made significant contributions in the improvements of microfluidic chips for affinity extraction, separations and detections. Furthermore, microfluidic chip methods for studying aptamer-target interactions and performing aptamer selections have also been summarized. Accordingly, research vacancies and future development trends in these areas are discussed.
Collapse
Affiliation(s)
- Yuanhong Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
13
|
Kozlowski P, de Mezer M, Krzyzosiak WJ. Trinucleotide repeats in human genome and exome. Nucleic Acids Res 2010; 38:4027-39. [PMID: 20215431 PMCID: PMC2896521 DOI: 10.1093/nar/gkq127] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Trinucleotide repeats (TNRs) are of interest in genetics because they are used as markers for tracing genotype–phenotype relations and because they are directly involved in numerous human genetic diseases. In this study, we searched the human genome reference sequence and annotated exons (exome) for the presence of uninterrupted triplet repeat tracts composed of six or more repeated units. A list of 32 448 TNRs and 878 TNR-containing genes was generated and is provided herein. We found that some triplet repeats, specifically CNG, are overrepresented, while CTT, ATC, AAC and AAT are underrepresented in exons. This observation suggests that the occurrence of TNRs in exons is not random, but undergoes positive or negative selective pressure. Additionally, TNR types strongly determine their localization in mRNA sections (ORF, UTRs). Most genes containing exon-overrepresented TNRs are associated with gene ontology-defined functions. Surprisingly, many groups of genes that contain TNR types coding for different homo-amino acid tracts associate with the same transcription-related GO categories. We propose that TNRs have potential to be functional genetic elements and that their variation may be involved in the regulation of many common phenotypes; as such, TNR polymorphisms should be considered a priority in association studies.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | |
Collapse
|
14
|
Sobczak K, Michlewski G, de Mezer M, Kierzek E, Krol J, Olejniczak M, Kierzek R, Krzyzosiak WJ. Structural diversity of triplet repeat RNAs. J Biol Chem 2010; 285:12755-64. [PMID: 20159983 DOI: 10.1074/jbc.m109.078790] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tandem repeats of various trinucleotide motifs are present in the human transcriptome, but the functions of these regular sequences, which likely depend on the structures they form, are still poorly understood. To gain new insight into the structural and functional properties of triplet repeats in RNA, we have performed a biochemical structural analysis of the complete set of triplet repeat transcripts, each composed of a single sequence repeated 17 times. We show that these transcripts fall into four structural classes. The repeated CAA, UUG, AAG, CUU, CCU, CCA, and UAA motifs did not form any higher order structure under any analyzed conditions. The CAU, CUA, UUA, AUG, and UAG repeats are ordered according to their increasing tendency to form semistable hairpins. The repeated CGA, CGU, and all CNG motifs form fairly stable hairpins, whereas AGG and UGG repeats fold into stable G-quadruplexes. The triplet repeats that formed the most stable structures were characterized further by biophysical methods. UV-monitored structure melting revealed that CGG and CCG repeats form, respectively, the most and least stable hairpins of all CNG repeats. Circular dichroism spectra showed that the AGG and UGG repeat quadruplexes are formed by parallel RNA strands. Furthermore, we demonstrated that the different susceptibility of various triplet repeat transcripts to serum nucleases can be explained by the sequence and structural features of the tested RNAs. The results of this study provide a comprehensive structural foundation for the functional analysis of triplet repeats in transcripts.
Collapse
Affiliation(s)
- Krzysztof Sobczak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mashima T, Matsugami A, Nishikawa F, Nishikawa S, Katahira M. Unique quadruplex structure and interaction of an RNA aptamer against bovine prion protein. Nucleic Acids Res 2009; 37:6249-58. [PMID: 19666719 PMCID: PMC2764455 DOI: 10.1093/nar/gkp647] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA aptamers against bovine prion protein (bPrP) were obtained, most of the obtained aptamers being found to contain the r(GGAGGAGGAGGA) (R12) sequence. Then, it was revealed that R12 binds to both bPrP and its β-isoform with high affinity. Here, we present the structure of R12. This is the first report on the structure of an RNA aptamer against prion protein. R12 forms an intramolecular parallel quadruplex. The quadruplex contains G:G:G:G tetrad and G(:A):G:G(:A):G hexad planes. Two quadruplexes form a dimer through intermolecular hexad–hexad stacking. Two lysine clusters of bPrP have been identified as binding sites for R12. The electrostatic interaction between the uniquely arranged phosphate groups of R12 and the lysine clusters is suggested to be responsible for the affinity of R12 to bPrP. The stacking interaction between the G:G:G:G tetrad planes and tryptophan residues may also contribute to the affinity. One R12 dimer molecule is supposed to simultaneously bind the two lysine clusters of one bPrP molecule, resulting in even higher affinity. The atomic coordinates of R12 would be useful for the development of R12 as a therapeutic agent against prion diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Tsukasa Mashima
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
16
|
Kikuchi K, Umehara T, Nishikawa F, Fukuda K, Hasegawa T, Nishikawa S. Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 2009; 386:118-23. [PMID: 19501043 DOI: 10.1016/j.bbrc.2009.05.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/30/2009] [Indexed: 11/28/2022]
Abstract
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.
Collapse
Affiliation(s)
- Kunio Kikuchi
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Lipay JM, Mihailescu MR. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). MOLECULAR BIOSYSTEMS 2009; 5:1347-55. [DOI: 10.1039/b911555b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|