1
|
Li C, Zhou Z, Ren C, Deng Y, Peng F, Wang Q, Zhang H, Jiang Y. Triplex-forming oligonucleotides as an anti-gene technique for cancer therapy. Front Pharmacol 2022; 13:1007723. [PMID: 36618947 PMCID: PMC9811266 DOI: 10.3389/fphar.2022.1007723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of double-stranded DNA with high specificity and affinity and inhibit gene expression. Triplex-forming oligonucleotides have gained prominence because of their potential applications in antigene therapy. In particular, the target specificity of triplex-forming oligonucleotides combined with their ability to suppress oncogene expression has driven their development as anti-cancer agents. So far, triplex-forming oligonucleotides have not been used for clinical treatment and seem to be gradually snubbed in recent years. But triplex-forming oligonucleotides still represent an approach to down-regulate the expression of the target gene and a carrier of active substances. Therefore, in the present review, we will introduce the characteristics of triplex-forming oligonucleotides and their anti-cancer research progress. Then, we will discuss the challenges in their application.
Collapse
Affiliation(s)
- Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zunzhen Zhou
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Peng
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qiongfen Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China,*Correspondence: Hong Zhang, ; Yuan Jiang,
| |
Collapse
|
2
|
Debugging the genetic code: non-viral in vivo delivery of therapeutic genome editing technologies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:24-32. [PMID: 30984891 DOI: 10.1016/j.cobme.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efforts to precisely correct genomic mutations that underlie hereditary diseases for therapeutic benefit have advanced alongside the emergence and improvement of genome engineering technologies. These methods can be divided into two main classes: active nucleasebased platforms including the popular CRISPR/Cas9 system and oligo/polynucleotide strategies including triplex-forming oligonucleotides (TFOs), such as peptide nucleic acids (PNAs). These technologies have been successful in cell culture and in animals, but important challenges remain before these tools can be translated into the clinic; they must be effectively delivered to and taken up by specific cell types of interest, achieve correction levels in target cells that significantly ameliorate the disease phenotype, and demonstrate minimal off-target and toxicity effects. Here we review and compare the current strategies and non-viral delivery methods, mainly lipid and polymeric vehicles, proposed for genome editing of inherited disorders with a focus on in vivo delivery and efficacy. While the path to a safe and effective medical treatment may be arduous, the future outlook of therapeutic genome editing remains promising as long as precise technologies can be combined with efficient delivery.
Collapse
|
3
|
Tiricz H, Nagy B, Ferenc G, Török K, Nagy I, Dudits D, Ayaydin F. Relaxed chromatin induced by histone deacetylase inhibitors improves the oligonucleotide-directed gene editing in plant cells. JOURNAL OF PLANT RESEARCH 2018; 131:179-189. [PMID: 28836127 DOI: 10.1007/s10265-017-0975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Improving efficiency of oligonucleotide-directed mutagenesis (ODM) is a prerequisite for wide application of this gene-editing approach in plant science and breeding. Here we have tested histone deacetylase inhibitor treatments for induction of relaxed chromatin and for increasing the efficiency of ODM in cultured maize cells. For phenotypic assay we produced transgenic maize cell lines expressing the non-functional Green Fluorescent Protein (mGFP) gene carrying a TAG stop codon. These transgenic cells were bombarded with corrective oligonucleotide as editing reagent to recover GFP expression. Repair of green fluorescent protein function was monitored by confocal fluorescence microscopy and flow cytometry was used for quantification of correction events. Sequencing PCR fragments of the GFP gene from corrected cells indicated a nucleotide exchange in the stop codon (TAG) from T to G nucleotide that resulted in the restoration of GFP function. We show that pretreatment of maize cells with sodium butyrate (5-10 mM) and nicotinamide (1-5 mM) as known inhibitors of histone deacetylases can cause elevated chromatin sensitivity to DNase I that was visualized in agarose gels and confirmed by the reduced presence of intact PCR template for the inserted exogenous mGFP gene. Maize cells with more relaxed chromatin could serve as an improved recipient for targeted nucleotide exchange as indicated by an average of 2.67- to 3.62-fold increase in GFP-positive cells. Our results stimulate further studies on the role of the condition of the recipient cells in ODM and testing the application of chromatin modifying agents in other, programmable nuclease-based genome-editing techniques in higher plants.
Collapse
Affiliation(s)
- Hilda Tiricz
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bettina Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Török
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - Dénes Dudits
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Ferhan Ayaydin
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Laboratory of Cellular Imaging, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
4
|
The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e304. [PMID: 27045208 PMCID: PMC5014528 DOI: 10.1038/mtna.2016.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/12/2015] [Indexed: 12/27/2022]
Abstract
Cellular responses and molecular mechanisms activated by exogenous DNA that
invades cells are only partially understood. This limits the practical use of
gene targeting strategies. Small fragment homologous replacement (SFHR) uses a
small exogenous wild-type DNA fragment to restore the endogenous wild-type
sequence; unfortunately, this mechanism has a low frequency of correction.
In this study, we used a mouse embryonic fibroblast cell line with a stably
integrated mutated gene for enhanced green fluorescence protein. The restoration
of a wild-type sequence can be detected by flow cytometry analysis. We
quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle
control genes. Peculiar temporal gene expression patterns were observed for both
pathways. Different DNA repair pathways, not only homologous recombination, as
well as the three main cell cycle checkpoints appeared to mediate the cellular
response. Eighteen genes were selected as highly significant target/effectors of
SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell
cycle control. Our results increase the knowledge of the molecular mechanisms
involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets
of both the cell cycle and DNA repair machineries were selected for manipulation
to enhance the practical application of SFHR.
Collapse
|
5
|
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontanière S, de Crozé N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep 2016; 14:2263-2272. [PMID: 26923600 DOI: 10.1016/j.celrep.2016.02.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.
Collapse
Affiliation(s)
- Jean-Baptiste Renaud
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Charlotte Boix
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Marine Charpentier
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Julien Cochennec
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | | | - Loïc Perrouault
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Laurent Tesson
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Joanne Edouard
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Reynald Thinard
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Séverine Menoret
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Noémie de Crozé
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | | | - Frédéric Sohm
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Ignacio Anegon
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| |
Collapse
|
6
|
Suzuki S, Sargent RG, Illek B, Fischer H, Esmaeili-Shandiz A, Yezzi MJ, Lee A, Yang Y, Kim S, Renz P, Qi Z, Yu J, Muench MO, Beyer AI, Guimarães AO, Ye L, Chang J, Fine EJ, Cradick TJ, Bao G, Rahdar M, Porteus MH, Shuto T, Kai H, Kan YW, Gruenert DC. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e273. [PMID: 26730810 PMCID: PMC5012545 DOI: 10.1038/mtna.2015.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - R Geoffrey Sargent
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Beate Illek
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Horst Fischer
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Alaleh Esmaeili-Shandiz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
| | - Michael J Yezzi
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Albert Lee
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Present address: Graduate Program in Biochemistry, Molecular, Cellular, and Developmental Biology, University of California–Davis, Davis, California, USA
| | - Yanu Yang
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Molecular Department, Hunter Laboratories, Campbell, California, USA
| | - Soya Kim
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Present address: Heinrich-Heine-Universität Düsseldorf, Institut für Genetik, Düsseldorf, Germany
| | - Peter Renz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Graduate Program in the Department of Biosystems Science and Engineering, ETH, Zürich, Switzerland
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Marcus O Muench
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Blood Systems Research Institute, San Francisco, California, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, California, USA
| | | | - Lin Ye
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Judy Chang
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghdad Rahdar
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W Kan
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
| | - Dieter C Gruenert
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
7
|
Velho RV, Sperb-Ludwig F, Schwartz IVD. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals. AN ACAD BRAS CIENC 2015; 87:1375-88. [PMID: 26247150 DOI: 10.1590/0001-3765201520140711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.
Collapse
Affiliation(s)
- Renata V Velho
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, BR
| | | | | |
Collapse
|
8
|
Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res 2014; 47:45-55. [PMID: 23981235 PMCID: PMC3946944 DOI: 10.1021/ar400036a] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic oligonucleotides have been extensively applied tocontrol a wide range of biological processes such as gene expression, gene repair, DNA replication, and protein activity. Based on well-established sequence design rules that typically rely on Watson-Crick base pairing interactions researchers can readily program the function of these oligonucleotides. Therefore oligonucleotides provide a flexible platform for targeting a wide range of biological molecules, including DNA, RNA, and proteins. In addition, oligonucleotides are commonly used research tools in cell biology and developmental biology. However, a lack of conditional control methods has hampered the precise spatial and temporal regulation of oligonucleotide activity, which limits the application of these reagents to investigate complex biological questions. Nature controls biological function with a high level of spatial and temporal resolution and in order to elucidate the molecular mechanisms of biological processes, researchers need tools that allow for the perturbation of these processes with Nature's precision. Light represents an excellent external regulatory element since irradiation can be easily controlled spatially and temporally. Thus, researchers have developed several different methods to conditionally control oligonucleotide activity with light. One of the most versatile strategies is optochemical regulation through the installation and removal of photolabile caging groups on oligonucleotides. To produce switches that can control nucleic acid function with light, chemists introduce caging groups into the oligomer backbone or on specific nucleobases to block oligonucleotide function until the caging groups are removed by light exposure. In this Account, we focus on the application of caged nucleobases to the photoregulation of DNA function. Using this approach, we have both activated and deactivated gene expression optochemically at the transcriptional and translational level with spatial and temporal control. Specifically, we have used caged triplex-forming oligomers and DNA decoys to regulate transcription, and we have regulated translation with light-activated antisense agents. Moreover, we also discuss strategies that can trigger DNA enzymatic activity, DNA amplification, and DNA mutagenesis by light illumination. More recently, we have developed light-activated DNA logic operations, an advance that may lay the foundation for the optochemical control of complex DNA calculations.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
9
|
Ma S, Wang X, Liu Y, Gao J, Zhang S, Shi R, Chang J, Zhao P, Xia Q. Multiplex genomic structure variation mediated by TALEN and ssODN. BMC Genomics 2014; 15:41. [PMID: 24438544 PMCID: PMC3933007 DOI: 10.1186/1471-2164-15-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
Background Genomic structure variation (GSV) is widely distributed in various organisms and is an important contributor to human diversity and disease susceptibility. Efficient approaches to induce targeted genomic structure variation are crucial for both analytic and therapeutic studies of GSV. Here, we presented an efficient strategy to induce targeted GSV including chromosomal deletions, duplications and inversions in a precise manner. Results Utilizing Transcription Activator-Like Effector Nucleases (TALEN) designed to target two distinct sites, we demonstrated targeted deletions, duplications and inversions of an 8.9 Mb chromosomal segment, which is about one third of the entire chromosome. We developed a novel method by combining TALEN-induced GSV and single stranded oligodeoxynucleotide (ssODN) mediated gene modifications to reduce unwanted mutations occurring during the targeted GSV using TALEN or Zinc finger nuclease (ZFN). Furthermore, we showed that co-introduction of TALEN and ssODN generated unwanted complex structure variation other than the expected chromosomal deletion. Conclusions We demonstrated the ability of TALEN to induce targeted GSV and provided an efficient strategy to perform GSV precisely. Furthermore, it is the first time to show that co-introduction of TALEN and ssODN generated unwanted complex structure variation. It is plausible to believe that the strategies developed in this study can be applied to other organisms, and will help understand the biological roles of GSV and therapeutic applications of TALEN and ssODN. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-41) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs). Methods Mol Biol 2014; 1114:279-90. [PMID: 24557910 DOI: 10.1007/978-1-62703-761-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.
Collapse
|
11
|
Engineering nucleases for gene targeting: safety and regulatory considerations. N Biotechnol 2013; 31:18-27. [PMID: 23851284 DOI: 10.1016/j.nbt.2013.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022]
Abstract
Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight.
Collapse
|
12
|
Kolganova NA, Shchyolkina AK, Chudinov AV, Zasedatelev AS, Florentiev VL, Timofeev EN. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides. Nucleic Acids Res 2012; 40:8175-85. [PMID: 22641847 PMCID: PMC3439883 DOI: 10.1093/nar/gks410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/14/2022] Open
Abstract
Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine.
Collapse
Affiliation(s)
| | | | | | | | | | - E. N. Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
13
|
Small fragment homologous replacement: evaluation of factors influencing modification efficiency in an eukaryotic assay system. PLoS One 2012; 7:e30851. [PMID: 22359552 PMCID: PMC3281040 DOI: 10.1371/journal.pone.0030851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/26/2011] [Indexed: 02/07/2023] Open
Abstract
Homologous Replacement is used to modify specific gene sequences of chromosomal DNA in a process referred to as “Small Fragment Homologous Replacement”, where DNA fragments replace genomic target resulting in specific sequence changes. To optimize the efficiency of this process, we developed a reporter based assay system where the replacement frequency is quantified by cytofluorimetric analysis following restoration of a stably integrated mutated eGFP gene in the genome of SV-40 immortalized mouse embryonic fibroblasts (MEF-SV-40). To obtain the highest correction frequency with this system, several parameters were considered: fragment synthesis and concentration, cell cycle phase and methylation status of both fragment and recipient genome. In addition, different drugs were employed to test their ability to improve technique efficiency. SFHR-mediated genomic modification resulted to be stably transmitted for several cell generations and confirmed at transcript and genomic levels. Modification efficiency was estimated in a range of 0.01–0.5%, further increasing when PARP-1 repair pathway was inhibited. In this study, for the first time SFHR efficiency issue was systematically approached and in part addressed, therefore opening new potential therapeutic ex-vivo applications.
Collapse
|
14
|
Gruenert DC, Sargent RG. Virus-mediated Genetic Surgery: Homologous Recombination With a Little "Helper" From My Friends. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e2. [PMID: 23344619 PMCID: PMC3381596 DOI: 10.1038/mtna.2011.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dieter C Gruenert
- 1] Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA [2] Department of Laboratory Medicine, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
15
|
Fatthalla MI, Elkholy YM, Abbas NS, Mandour AH, Jørgensen PT, Bomholt N, Pedersen EB. Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction. Bioorg Med Chem 2011; 20:207-14. [PMID: 22154560 DOI: 10.1016/j.bmc.2011.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
Abstract
A new intercalating nucleic acid monomer M comprising a 4-(1-indole)-butane-1,2-diol moiety was synthesized via a classical alkylation reaction of indole-3-carboxaldehyde followed by a condensation reaction with phenanthrene-9,10-dione in the presence of ammonium acetate to form a phenanthroimidazole moiety linked to the indole ring. Insertion of the new intercalator as a bulge into a Triplex Forming Oligonucleotide resulted in good thermal stability of the corresponding Hoogsteen-type triplexes. Molecular modeling supports the possible intercalating ability of M. Hybridisation properties of DNA/DNA and RNA/DNA three-way junctions (TWJ) with M in the branching point were also evaluated by their thermal stability at pH 7. DNA/DNA TWJ showed increase in thermal stability compared to wild type oligonucleotides whereas this was not the case for RNA/DNA TWJ.
Collapse
Affiliation(s)
- Maha I Fatthalla
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|