1
|
Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities. Microbiol Mol Biol Rev 2008; 72:13-53, table of contents. [PMID: 18322033 DOI: 10.1128/mmbr.00026-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enzymes and other proteins are difficult subjects for bioinformatic analysis because they exhibit variant catalytic, structural, regulatory, and fusion mode features within a protein family whose sequences are not highly conserved. However, such features reflect dynamic and interesting scenarios of evolutionary importance. The value of experimental data obtained from individual organisms is instantly magnified to the extent that given features of the experimental organism can be projected upon related organisms. But how can one decide how far along the similarity scale it is reasonable to go before such inferences become doubtful? How can a credible picture of evolutionary events be deduced within the vertical trace of inheritance in combination with intervening events of lateral gene transfer (LGT)? We present a comprehensive analysis of a dehydrogenase protein family (TyrA) as a prototype example of how these goals can be accomplished through the use of cohesion group analysis. With this approach, the full collection of homologs is sorted into groups by a method that eliminates bias caused by an uneven representation of sequences from organisms whose phylogenetic spacing is not optimal. Each sufficiently populated cohesion group is phylogenetically coherent and defined by an overall congruence with a distinct section of the 16S rRNA gene tree. Exceptions that occasionally are found implicate a clearly defined LGT scenario whereby the recipient lineage is apparent and the donor lineage of the gene transferred is localized to those organisms that define the cohesion group. Systematic procedures to manage and organize otherwise overwhelming amounts of data are demonstrated.
Collapse
|
2
|
Leiros HKS, Pey AL, Innselset M, Moe E, Leiros I, Steen IH, Martinez A. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 2007; 282:21973-86. [PMID: 17537732 DOI: 10.1074/jbc.m610174200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The characteristic of cold-adapted enzymes, high catalytic efficiency at low temperatures, is often associated with low thermostability and high flexibility. In this context, we analyzed the catalytic properties and solved the crystal structure of phenylalanine hydroxylase from the psychrophilic bacterium Colwellia psychrerythraea 34H (CpPAH). CpPAH displays highest activity with tetrahydrobiopterin (BH(4)) as cofactor and at 25 degrees C (15 degrees C above the optimal growth temperature). Although the enzyme is monomeric with a single L-Phe-binding site, the substrate binds cooperatively. In comparison with PAH from mesophilic bacteria and mammalian organisms, CpPAH shows elevated [S(0.5)](L-Phe) (= 1.1 +/- 0.1 mm) and K(m)(BH(4))(= 0.3 +/- 0.1 mm), as well as high catalytic efficiency at 10 degrees C. However, the half-inactivation and denaturation temperature is only slightly lowered (T(m) approximately 52 degrees C; where T(m) is half-denaturation temperature), in contrast to other cold-adapted enzymes. The crystal structure shows regions of local flexibility close to the highly solvent accessible binding sites for BH(4) (Gly(87)/Phe(88)/Gly(89)) and l-Phe (Tyr(114)-Pro(118)). Normal mode and COREX analysis also detect these and other areas with high flexibility. Greater mobility around the active site and disrupted hydrogen bonding abilities for the cofactor appear to represent cold-adaptive properties that do not markedly affect the thermostability of CpPAH.
Collapse
Affiliation(s)
- Hanna-Kirsti S Leiros
- Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, University of Tromsø, Tromsø
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Operons are clusters of genes that are transcribed as a single message, and regulated by the same gene expression machinery. They are found primarily in prokaryotic genomes. Because genes in the same operon are likely to have related functions, identification of the operon structure is potentially useful for assigning gene function. We report the development and benchmarking of two different methods for detecting operons, based on an analysis of 42 fully sequenced prokaryotic organisms. The Gene Neighbor method (GNM) utilizes the relatively high conservation of gene order in operons, compared with genes in general. The Gene Gap Method (GGM) makes use of the relatively short gap between genes in operons compared with that otherwise found between adjacent genes. The methods have been benchmarked using KEGG pathway data and RegulonDB Escherichia coli operon data. With optimum parameters, the specificity of the GNM is 93% and the sensitivity is 70%. For the GGM, the specificity is 95% and the sensitivity is 68%. Together, the two methods have a sensitivity of 87.2%, while joint predictions have a sensitivity of 50% and a specificity of 98%. The methods are used to infer possible functions for some hypothetical genes in prokaryotic genomes. The methods have proven a useful addition to structure information in deriving protein function in a structural genomics project.
Collapse
Affiliation(s)
- Yongpan Yan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
4
|
Song J, Bonner CA, Wolinsky M, Jensen RA. The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context. BMC Biol 2005; 3:13. [PMID: 15888209 PMCID: PMC1173090 DOI: 10.1186/1741-7007-3-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 05/12/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The TyrA protein family includes members that catalyze two dehydrogenase reactions in distinct pathways leading to L-tyrosine and a third reaction that is not part of tyrosine biosynthesis. Family members share a catalytic core region of about 30 kDa, where inhibitors operate competitively by acting as substrate mimics. This protein family typifies many that are challenging for bioinformatic analysis because of relatively modest sequence conservation and small size. RESULTS Phylogenetic relationships of TyrA domains were evaluated in the context of combinatorial patterns of specificity for the two substrates, as well as the presence or absence of a variety of fusions. An interactive tool is provided for prediction of substrate specificity. Interactive alignments for a suite of catalytic-core TyrA domains of differing specificity are also provided to facilitate phylogenetic analysis. tyrA membership in apparent operons (or supraoperons) was examined, and patterns of conserved synteny in relationship to organismal positions on the 16S rRNA tree were ascertained for members of the domain Bacteria. A number of aromatic-pathway genes (hisHb, aroF, aroQ) have fused with tyrA, and it must be more than coincidental that the free-standing counterparts of all of the latter fused genes exhibit a distinct trace of syntenic association. CONCLUSION We propose that the ancestral TyrA dehydrogenase had broad specificity for both the cyclohexadienyl and pyridine nucleotide substrates. Indeed, TyrA proteins of this type persist today, but it is also common to find instances of narrowed substrate specificities, as well as of acquisition via gene fusion of additional catalytic domains or regulatory domains. In some clades a qualitative change associated with either narrowed substrate specificity or gene fusion has produced an evolutionary "jump" in the vertical genealogy of TyrA homologs. The evolutionary history of gene organizations that include tyrA can be deduced in genome assemblages of sufficiently close relatives, the most fruitful opportunities currently being in the Proteobacteria. The evolution of TyrA proteins within the broader context of how their regulation evolved and to what extent TyrA co-evolved with other genes as common members of aromatic-pathway regulons is now feasible as an emerging topic of ongoing inquiry.
Collapse
Affiliation(s)
- Jian Song
- Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Carol A Bonner
- Emerson Hall, University of Florida, P.O. Box 14425, Gainesville, Florida, 32604-2425, USA
| | - Murray Wolinsky
- Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Roy A Jensen
- Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
- Emerson Hall, University of Florida, P.O. Box 14425, Gainesville, Florida, 32604-2425, USA
| |
Collapse
|
5
|
Schaechter M. Escherichia coli and Salmonella 2000: the View From Here. EcoSal Plus 2004; 1. [PMID: 26443369 DOI: 10.1128/ecosalplus.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 06/05/2023]
Abstract
In 1995, an editorial in Science (267:1575) commented that predictions made some 25 years previously regarding "Biology and the Future of Man" were largely fulfilled but that "the most revolutionary and unexpected findings were not predicted." We would be glad to do as well! As we stated at the beginning, our work as editors of the Escherichia coli and Salmonella book did not endow us with special powers of prophecy but it does permit us to express our excitement for the future. In our opinion, E. coli and S. enterica will continue to play a central role in biological research. This is not because they are intrinsically more interesting than any other bacteria, as we believe that all bacteria are equally interesting. However, knowledge builds on knowledge, and it is here that these two species continue to have a large edge not only over other microorganisms but also, for some time to come, over all other forms of life. It is interesting in this connection that biotechnology, having made detours through other microorganisms, always seems to return to E. coli.
Collapse
|
6
|
Xie G, Keyhani NO, Bonner CA, Jensen RA. Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev 2003; 67:303-42, table of contents. [PMID: 12966138 PMCID: PMC193870 DOI: 10.1128/mmbr.67.3.303-342.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.
Collapse
Affiliation(s)
- Gary Xie
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
7
|
Downer R, Roche F, Park PW, Mecham RP, Foster TJ. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 2002; 277:243-50. [PMID: 11684686 DOI: 10.1074/jbc.m107621200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The elastin-binding proteins EbpS of Staphylococcus aureus strains Cowan and 8325-4 were predicted from sequence analysis to comprise 486 residues. Specific antibodies were raised against an N-terminal domain (residues 1-267) and a C-terminal domain (residues 343-486) expressed as recombinant proteins in Escherichia coli. Western blotting of lysates of wild-type 8325-4 and Newman and the corresponding ebpS mutants showed that EbpS migrated with an apparent molecular mass of 83 kDa. The protein was found exclusively in cytoplasmic membrane fractions purified from protoplasts or lysed cells, in contrast to the clumping factor ClfA, which was cell-wall-associated. EbpS was predicted to have three hydrophobic domains H1-(205-224), H2-(265-280), and H3-(315-342). A series of hybrid proteins was formed between EbpS at the N terminus and either alkaline phosphatase or beta-galactosidase at the C terminus (EbpS-PhoA, EbpS-LacZ). PhoA and LacZ were fused to EbpS between hydrophobic domains H1-H2 and H2-H3, and distal to H3. Expression of enzymatic activity in E. coli showed that EbpS is an integral membrane protein with two membrane-spanning domains H1 and H3. N-terminal residues 1-205 and C-terminal residues 343-486 were predicted to be exposed on the outer face of the cytoplasmic membrane. The ligand-binding domain of EbpS is known from previous studies to be present in the N terminus between residues 14-34 and probing whole cells with anti-EbpS1-267 antibodies indicated that this region is exposed on the surface of intact cells. This was also confirmed by the observation that wild-type S. aureus Newman cells bound labeled tropoelastin whereas the ebpS mutant bound 72% less. In contrast, the C terminus, which carries a putative LysM peptidoglycan-binding domain, is not exposed on the surface of intact cells and presumably remains buried within the peptidoglycan. Finally, expression of EbpS was correlated with the ability of cells to grow to a higher density in liquid culture, suggesting that EbpS may have a role in regulating cell growth.
Collapse
Affiliation(s)
- Robert Downer
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
8
|
Xie G, Forst C, Bonner C, Jensen RA. Significance of two distinct types of tryptophan synthase beta chain in Bacteria, Archaea and higher plants. Genome Biol 2002; 3:RESEARCH0004. [PMID: 11806827 PMCID: PMC150451 DOI: 10.1186/gb-2001-3-1-research0004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Revised: 10/30/2001] [Accepted: 10/30/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tryptophan synthase consists of two subunits, alpha and beta. Two distinct subgroups of beta chain exist. The major group (TrpEb_1) includes the well-studied beta chain of Salmonella typhimurium. The minor group of beta chain (TrpEb_2) is most frequently found in the Archaea. Most of the amino-acid residues important for catalysis are highly conserved between both TrpE subfamilies. RESULTS Conserved amino-acid residues of TrpEb_1 that make allosteric contact with the TrpEa subunit (the alpha chain) are absent in TrpEb_2. Representatives of Archaea, Bacteria and higher plants all exist that possess both TrpEb_1 and TrpEb_2. In those prokaryotes where two trpEb genes coexist, one is usually trpEb_1 and is adjacent to trpEa, whereas the second is trpEb_2 and is usually unlinked with other tryptophan-pathway genes. CONCLUSIONS TrpEb_1 is nearly always partnered with TrpEa in the tryptophan synthase reaction. However, by default at least six lineages of the Archaea are likely to use TrpEb_2 as the functional beta chain, as TrpEb_1 is absent. The six lineages show a distinctive divergence within the overall TrpEa phylogenetic tree, consistent with the lack of selection for amino-acid residues in TrpEa that are otherwise conserved for interfacing with TrpEb_1. We suggest that the standalone function of TrpEb_2 might be to catalyze the serine deaminase reaction, an established catalytic capability of tryptophan synthase beta chains. A coincident finding of interest is that the Archaea seem to use the citramalate pathway, rather than threonine deaminase (IlvA), to initiate the pathway of isoleucine biosynthesis.
Collapse
Affiliation(s)
- Gary Xie
- BioScience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.
| | | | | | | |
Collapse
|
9
|
Calhoun DH, Bonner CA, Gu W, Xie G, Jensen RA. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa. Genome Biol 2001; 2:RESEARCH0030. [PMID: 11532214 PMCID: PMC55327 DOI: 10.1186/gb-2001-2-8-research0030] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Revised: 05/21/2001] [Accepted: 06/13/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chorismate mutases of the AroQ homology class are widespread in the Bacteria and the Archaea. Many of these exist as domains that are fused with other aromatic-pathway catalytic domains. Among the monofunctional AroQ proteins, that from Erwinia herbicola was previously shown to have a cleavable signal peptide and located in the periplasmic compartment. Whether or not this might be unique to E. herbicola was unknown. RESULTS The gene coding for the AroQ protein was cloned from Salmonella typhimurium, and the AroQ protein purified from both S. typhimurium and Pseudomonas aeruginosa was shown to have a periplasmic location. The periplasmic chorismate mutases (denoted *AroQ) are shown to be a distinct subclass of AroQ, being about twice the size of cytoplasmic AroQ proteins. The increased size is due to a carboxy-terminal extension of unknown function. In addition, a so-far novel aromatic aminotransferase was shown to be present in the periplasm of P. aeruginosa. CONCLUSIONS Our analysis has detected a number of additional *aroQ genes. The joint presence of *AroQ, cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment of P. aeruginosa comprises a complete chorismate-to-phenylalanine pathway and accounts for the "hidden overflow pathway" to phenylalanine described previously.
Collapse
Affiliation(s)
- David H Calhoun
- Department of Chemistry, City College of New York, New York, NY 10031, USA
| | - Carol A Bonner
- Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
| | - Wei Gu
- Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
| | - Gary Xie
- Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
- BioScience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Roy A Jensen
- Department of Chemistry, City College of New York, New York, NY 10031, USA
- Department of Microbiology and Cell Science, Gainesville, FL 32611, USA
- BioScience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
10
|
Abstract
Five years after the publication of the second edition of the reference book Escherichia coli and Salmonella: Cellular and Molecular Biology, and on the eve of launching a successor venture, the editors and colleagues examine where we stand in our quest for an understanding of these organisms. The main areas selected for this brief inquiry are genomics, evolution, molecular multifunctionality, functional backups, regulation of gene expression, cell biology, sensing of the environment, and ecology.
Collapse
Affiliation(s)
- M Schaechter
- San Diego State University, San Diego, California, USA.
| |
Collapse
|