1
|
Gu W, Zeng D, Zhang C. Discovering the effect of combination of celecoxib and sorafenib on hepatocellular carcinoma. Discov Oncol 2024; 15:321. [PMID: 39083127 PMCID: PMC11291820 DOI: 10.1007/s12672-024-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common and fatal cancer, and its molecular mechanisms are still not fully understood. This study aimed to explore the potential molecular mechanisms and immune infiltration characteristics of celecoxib combined with sorafenib in the treatment of HCC by analyzing the differentially expressed genes (DEGs) from the GSE45340 dataset in the GEO database and identifying key genes. METHODS The GSE45340 dataset was downloaded from the GEO database, and DEGs were screened using GEO2R, and visualization and statistical analysis were performed. Metascape was used to perform functional annotation and protein-protein interaction network analysis of DEGs. The immune infiltration was analyzed using the TIMER database, and the expression of key genes and their relationship with patient survival were analyzed and verified using the UALCAN database. RESULTS A total of 2181 DEGs were screened through GEO2R analysis, and heat maps were drawn for the 50 genes with the highest expression. Metascape was used for enrichment analysis, and the enrichment results of KEGG and GO and the PPI network were obtained, and 44 core genes were screened. Analysis of the TIMER database found that 12 genes were closely related to tumor immune infiltration. UALCAN analysis further verified the differential expression of these genes in HCC and was closely related to the overall survival of patients. CONCLUSIONS Through comprehensive bioinformatics analysis, this study identified a group of key genes related to the treatment of HCC with celecoxib combined with sorafenib. These genes play an important role in tumor immune infiltration and patient survival, providing important clues for further studying the molecular mechanism of HCC and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Wang Gu
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China
| | - Dongyun Zeng
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Chao Zhang
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China.
| |
Collapse
|
2
|
Skubatz H. Nonsteroidal anti-inflammatory drugs as antipyretics and modulators of a molecular clock(s) in the appendix of Sauromatum venosum inflorescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:152-160. [PMID: 36074072 DOI: 10.1111/plb.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The appendix of the Sauromatum senosum inflorescence is a striking example of thermogenesis in plants. On the day of opening, the Sauromatum appendix becomes hot, reaching up to 32 °C. Aspirin, salicylic acid and 2,6-dihydroxybenzoic acid, a subclass of NSAIDs, induce a temperature rise from three mitochondrial sources: alternative oxidase, F1 FO -ATP synthase and adenine nucleotide translocator. This temperature rise is synchronized and compounded under various light/dark regimes. We studied the effect of different subgroups of NSAIDs on the temperature rise. Tissue slices of appendix of Sauromatum and Arum italicum inflorescences at a pre-mature stage were treated with the three inducers in combination with one NSAID under constant light or darkness and under different photoperiods. Temperature rise generated by the three heat sources in the presence of inducers and different non-selective NSAIDs were not compounded and occurred at three different times. Under constant light, DuP-697, ibuprofen, flurbiprofen, acetaminophen and diclofenac suppressed the temperature rise induced by the three salicylates. Desynchronization and delayed temperature rise were detected with 6/42-h light/ dark and 15/33-h light/dark regimes in the presence of celecoxib and ibuprofen. With a 24/24-h light/dark regime, temperature rise was suppressed in the presence of ibuprofen. There were differences in response to individual NSAIDs between appendix tissue of A. italicum and S. venosum. Mitochondrial energy balance is affected by NSAIDs. There is an interaction between light/dark regime and temperature rise and a relationship between timing mechanism and temperature rise.
Collapse
|
3
|
Lee JS, Kim HS, Hahm KB, Surh YJ. Effects of Genetic and Pharmacologic Inhibition of COX-2 on Colitis-associated Carcinogenesis in Mice. J Cancer Prev 2020; 25:27-37. [PMID: 32266177 PMCID: PMC7113413 DOI: 10.15430/jcp.2020.25.1.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
COX-2 has been inappropriately overexpressed in various human malignancies, and is considered as one of the representative targets for the chemoprevention of inflammation-associated cancer. In order to assess the role of COX-2 in colitis-induced carcinogenesis, the selective COX-2 inhibitor celecoxib and COX-2 null mice were exploited in an azoxymethane (AOM)-initiated and dextran sulfate sodium (DSS)-promoted murine colon carcinogenesis model. The administration of 2% DSS in drinking water for 1 week after a single intraperitoneal injection of AOM produced colorectal adenomas in 83% of mice, whereas only 27% of mice given AOM alone developed tumors. Oral administration of celecoxib significantly lowered the incidence as well as the multiplicity of colon tumors. The expression of COX-2 and inducible nitric oxide synthase (iNOS) was upregulated in the colon tissues of mice treated with AOM and DSS, and this was inhibited by celecoxib administration. Likewise, celecoxib treatment abrogated the DNA binding of NF-κB, a key transcription factor responsible for regulating expression of aforementioned pro-inflammatory enzymes, which was associated with suppression of IκBα degradation. In the COX-2 null (COX-2–/–) mice, there was about 30% reduction in the incidence of colon tumors, and the tumor multiplicity was also markedly reduced (7.7 ± 2.5 vs. 2.43 ± 1.4, P < 0.01). As both pharmacologic inhibition and genetic ablation of COX-2 gene could not completely suppress colon tumor formation following treatment with AOM and DSS, it is speculated that other pro-inflammatory mediators, including COX-1 and iNOS, should be additionally targeted to prevent inflammation-associated colon carcinogenesis.
Collapse
Affiliation(s)
- Jeong-Sang Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hyun Soo Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea.,Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 2019; 9:14193. [PMID: 31578445 PMCID: PMC6775050 DOI: 10.1038/s41598-019-50648-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
The placental stem cells have called the focus of attention for their therapeutic potential to treat different diseases, including cancer. There is plenty evidence about the antiproliferative, antiangiogenic and proapoptotic properties of the amniotic membrane. Liver cancer is the fifth cause of cancer in the world, with a poor prognosis and survival. Alternative treatments to radio- or chemotherapy have been searched. In this work we aimed to study the antiproliferative properties of the human amniotic membrane conditioned medium (AM-CM) in hepatocarcinoma cells. In addition, we have analyzed the regulation of pro and antiOncomiRs expression involved in hepatocarcinoma physiology. We have determined by 3H-thymidine incorporation assay that AM-CM inhibits DNA synthesis in HepG2 cells after 72 h of treatment. AM-CM pure or diluted at 50% and 25% also diminished HepG2 and HuH-7 cells viability and cell number. Furthermore, AM-CM induced cell cycle arrest in G2/M. When proliferation mechanisms were analyzed we found that AM-CM reduced the expression of both Cyclin D1 mRNA and protein. Nuclear expression of Ki-67 was also reduced. We observed that this CM was able to promote the expression of p53 and p21 mRNA and proteins, leading to cell growth arrest. Moreover, AM-CM induced an increase in nuclear p21 localization, observed by immunofluorescence. As p53 levels were increased, Mdm-2 expression was downregulated. Interestingly, HepG2 and HuH-7 cells treatment with AM-CM during 24 and 72 h produced an upregulation of antiOncomiRs 15a and 210, and a downregulation of proOncomiRs 206 and 145. We provide new evidence about the promising novel applications of human amniotic membrane in liver cancer.
Collapse
|
5
|
Cai J, Luo S, Lv X, Deng Y, Huang H, Zhao B, Zhang Q, Li G. Formulation of injectable glycyrrhizic acid-hydroxycamptothecin micelles as new generation of DNA topoisomerase I inhibitor for enhanced antitumor activity. Int J Pharm 2019; 571:118693. [PMID: 31525442 DOI: 10.1016/j.ijpharm.2019.118693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
To develop a new drug delivery system is one of the useful approaches to break through the limitation of hydroxycamptothecin (HCPT), a typical DNA topoisomerase I (Topo I) inhibitor in clinical appliance. Injectable glycyrrhizic acid-hydroxycamptothecin (GL-HCPT) micelles that were able to dramatically improve the solubility and stability of HCPT were prepared through self-assembly process and evaluated both in vitro and in vivo. With a mean particle size (PS) of 105.7 ± 9.7 nm and a drug loading (DL) of 9.0 ± 1.5%, GL-HCPT micelles were rapidly internalized by HepG2 cells after 1 h, significantly increasing the intracellular accumulation of HCPT. Compared with the current used HCPT injection and HCPT/GL physical mixture, GL-HCPT micelles showed enhanced antitumor activity against liver cancer cells (HepG2 and Huh7) as well as a superior suppression on the tumor growth of HepG2 tumor bearing mice. Interestingly, GL-HCPT micelles gathered in liver and simultaneously reduced the drug accumulation in normal tissues, thereby exhibiting minimal cytotoxicity to human normal liver cells (LO2). Therefore, we offered a convenient and cost-effective strategy to construct an intravenous drug delivery system (GL-HCPT micelles) as new generation of DNA Topo I inhibitor for enhanced cancer chemotherapy.
Collapse
Affiliation(s)
- Jieying Cai
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shiwen Luo
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xueli Lv
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingguang Deng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyuan Huang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of new drug screening, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Moon HJ, Park SY, Lee SH, Kang CD, Kim SH. Nonsteroidal Anti-inflammatory Drugs Sensitize CD44-Overexpressing Cancer Cells to Hsp90 Inhibitor Through Autophagy Activation. Oncol Res 2019; 27:835-847. [PMID: 30982499 PMCID: PMC7848457 DOI: 10.3727/096504019x15517850319579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, novel therapeutic strategies have been designed with the aim of killing cancer stem-like cells (CSCs), and considerable interest has been generated in the development of specific therapies that target stemness-related marker of CSCs. In this study, nonsteroidal anti-inflammatory drugs (NSAIDs) significantly potentiated Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-mediated cytotoxicity through apoptotic and autophagic cell death induction, but COX-2-inhibitory function was not required for NSAID-induced autophagy in CD44-overexpressing human chronic myeloid leukemia K562 (CD44highK562) cells. Importantly, we found that treatment with NSAIDs resulted in a dose-dependent increase in LC3-II level and decrease in p62 level and simultaneous reduction in multiple stemness-related markers including CD44, Oct4, c-Myc, and mutant p53 (mutp53) in CD44highK562 cells, suggesting that NSAIDs could induce autophagy, which might mediate degradation of stemness-related marker proteins. Activation of AMPK and inhibition of Akt/mTOR/p70S6K/4EBP1 participated in NSAID-induced autophagy in CD44highK562 cells. In addition, treatment of CD44highK562 cells with NSAIDs inhibited expression of HSF1/Hsps, which resulted in suppression of 17-AAG-induced activation of Hsp70, leading to reversal of 17-AAG resistance and sensitization of CD44highK562 cells to 17-AAG by NSAIDs. In conclusion, combining NSAIDs with Hsp90 inhibitor may offer one of the most promising strategies for eradication of CD44-overexpressing CSCs.
Collapse
Affiliation(s)
- Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - So-Young Park
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
7
|
Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1399-1410. [PMID: 30155693 DOI: 10.1007/s00210-018-1557-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is still a leading cancer killer in the community. Molecular targeted therapy with celecoxib (CXB) has shown promising antitumor effects; however, its use may be limited due to serious side effects. Curcumin (CUR) has also shown beneficial effects against HCC. Then, it was aimed to investigate the effects of adding CUR to CXB on HCC HepG2 cells. HepG2 cells were treated with CXB and/or CUR at increasing concentrations to investigate synergistic drug interactions, as calculated combination index (CI). Combination treatment effects on cell viability and caspase-3 activation were assessed. The levels of Akt, nuclear factor-kappa B (NF-κB), prostaglandin E2 (PGE2), malondialdehyde (MDA), cyclin D1 (CD1), and vascular endothelial growth factor (VEGF) were also evaluated. CXB (3.13-100 μM) and/or CUR (1.25-40 μM) reduced HepG2 cell viability dose-dependently. Nevertheless, lower combined concentrations showed higher synergism (CI < 1) and higher CXB dose reduction index (DRI > 1). Also, the addition of CUR to CXB resulted in increased cytotoxicity and caspase-3 activation, as compared to CXB alone. In addition, the selected combination significantly reduced the levels of Akt, NF-κB, PGE2, MDA, CD1, and VEGF, as compared to either agent alone. In conclusion, CUR augmented the CXB-mediated antitumor effects in HepG2 cells through, at least in part, antiproliferative, antioxidant, and pro-apoptotic mechanisms. This may allow the further use of CXB at lower concentrations, combined with CUR, as a promising safer targeted strategy for HCC management.
Collapse
|
8
|
Stable and sustained release liposomal formulations of celecoxib: In vitro and in vivo anti-tumor evaluation. Int J Pharm 2018; 540:89-97. [DOI: 10.1016/j.ijpharm.2018.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/14/2023]
|
9
|
Hu S, Chen Q, Lin T, Hong W, Wu W, Wu M, Du X, Jin R. The function of Notch1 intracellular domain in the differentiation of gastric cancer. Oncol Lett 2018; 15:6171-6178. [PMID: 29616098 PMCID: PMC5876425 DOI: 10.3892/ol.2018.8118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the complex function of the Notch signal pathway in gastric cancer (GC), the association between Notch homolog 1 (Notch1) intracellular domain (NICD) and differentiation of GC remains unknown. The present study aimed to investigate the potential association between NICD and GC differentiation, and demonstrated that poorly differentiated GC expressed increased NICD levels compared with well differentiated GC. A γ-secretase inhibitor inhibited the growth of AGS cells through downregulating NICD level. Additional data suggested that a COX-2 inhibitor caused a marked reduction of NICD level in comparison with a control group treated with dimethyl sulfoxide. Combined administration of γ-secretase and COX-2 inhibitor produced a marked inhibition of growth in AGS cells, which suggests that patients with poorly differentiated GC may benefit from the blockage of NICD, which potentially serves a role in GC differentiation.
Collapse
Affiliation(s)
- Sunkuan Hu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tiesu Lin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wandong Hong
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzhi Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Wu
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
10
|
Moon HJ, Kim HB, Lee SH, Jeun SE, Kang CD, Kim SH. Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 2018. [PMID: 29541415 PMCID: PMC5834263 DOI: 10.18632/oncotarget.24130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSAIDs (non-steroidal anti-inflammatory drugs) have potential use as anticancer agents, either alone or in combination with other cancer therapies. We found that NSAIDs including celecoxib (CCB) and ibuprofen (IBU) significantly potentiated the cytotoxicity of Hsp90 inhibitors in human multidrug-resistant (MDR) cells expressing high levels of mutant p53 (mutp53) protein and P-glycoprotein (P-gp), and reversed Hsp90 inhibitor resistance caused by activation of heat shock factor 1 (HSF1) and by up-regulation of heat shock proteins (Hsps) and P-gp. Inhibition of Akt/mTOR and STAT3 pathways by CCB induced autophagy, which promoted the degradation of mutp53, one of Hsp90 client proteins, and subsequently down-regulated HSF1/Hsps and P-gp. Inhibition of autophagy prevented mutp53 degradation and CCB-induced apoptosis, and inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK did not completely block CCB-induced cell death in MDR cells, suggesting that autophagic and apoptotic cell death may contribute to CCB-induced cytotoxicity in MDR cells. Furthermore, CCB and IBU suppressed Hsp90 inhibitor-induced HSF1/Hsp70/P-gp activity and mutp53 expression in MDR cells. Our results suggest that NSAIDs can be used as potential Hsp90 inhibitor chemosensitizers and reverse resistance of MDR cells to Hsp90 inhibitors via induction of apoptosis and autophagy. These results might enable the use of lower, less toxic doses of Hsp90 inhibitors and facilitate the design of practically applicable, novel combination therapy for the treatment of MDR cancer.
Collapse
Affiliation(s)
- Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Hak-Bong Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - So-Eun Jeun
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| |
Collapse
|
11
|
Cusimano A, Balasus D, Azzolina A, Augello G, Emma MR, Di Sano C, Gramignoli R, Strom SC, McCubrey JA, Montalto G, Cervello M. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. Int J Oncol 2017; 51:533-544. [PMID: 28656311 DOI: 10.3892/ijo.2017.4049] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/04/2017] [Indexed: 11/05/2022] Open
Abstract
The beneficial health properties of the Mediter-ranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW480) cell lines was used. Cells were treated with OC, and cell viability and apoptosis were evaluated. Compared with classical commercially available COX inhibitors (ibuprofen, indomethacin, nimesulide), OC was more effective in inducing cell growth inhibition in HCC and CRC cells. Moreover, OC inhibited colony formation and induced apoptosis, as confirmed by PARP cleavage, activation of caspases 3/7 and chromatin condensation. OC treatment in a dose dependent-manner induced expression of γH2AX, a marker of DNA damage, increased intracellular ROS production and caused mitochondrial depolarization. Moreover, the effects of OC were suppressed by the ROS scavenger N-acetyl-L-cysteine. Finally, OC was not toxic in primary normal human hepatocytes. In conclusion, OC treatment was found to exert a potent anticancer activity against HCC and CRC cells. Taken together, our findings provide preclinical support of the chemotherapeutic potential of EVOO against cancer.
Collapse
Affiliation(s)
- Antonella Cusimano
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Daniele Balasus
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Maria R Emma
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Cell Transplantation and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephen C Strom
- Division of Pathology, Department of Laboratory Medicine, Cell Transplantation and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology 'Alberto Monroy', National Research Council (CNR), Palermo, Italy
| |
Collapse
|
12
|
Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821761. [PMID: 26380295 PMCID: PMC4561296 DOI: 10.1155/2015/821761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.
Collapse
|
13
|
Assefnia S, Dakshanamurthy S, Guidry Auvil JM, Hampel C, Anastasiadis PZ, Kallakury B, Uren A, Foley DW, Brown ML, Shapiro L, Brenner M, Haigh D, Byers SW. Cadherin-11 in poor prognosis malignancies and rheumatoid arthritis: common target, common therapies. Oncotarget 2015; 5:1458-74. [PMID: 24681547 PMCID: PMC4039224 DOI: 10.18632/oncotarget.1538] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cadherin-11 (CDH11), associated with epithelial to mesenchymal transformation in development, poor prognosis malignancies and cancer stem cells, is also a major therapeutic target in rheumatoid arthritis (RA). CDH11 expressing basal-like breast carcinomas and other CDH11 expressing malignancies exhibit poor prognosis. We show that CDH11 is increased early in breast cancer and ductal carcinoma in-situ. CDH11 knockdown and antibodies effective in RA slowed the growth of basal-like breast tumors and decreased proliferation and colony formation of breast, glioblastoma and prostate cancer cells. The repurposed arthritis drug celecoxib, which binds to CDH11, and other small molecules designed to bind CDH11 without inhibiting COX-2 preferentially affect the growth of CDH11 positive cancer cells in vitro and in animals. These data suggest that CDH11 is important for malignant progression, and is a therapeutic target in arthritis and cancer with the potential for rapid clinical translation
Collapse
Affiliation(s)
- Shahin Assefnia
- The Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
SHAO DAN, KAN MUJIE, QIAO PING, PAN YUE, WANG ZHENG, XIAO XUANANG, LI JING, CHEN LI. Celecoxib induces apoptosis via a mitochondria-dependent pathway in the H22 mouse hepatoma cell line. Mol Med Rep 2014; 10:2093-8. [DOI: 10.3892/mmr.2014.2461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
|
15
|
Cheng HH, Chou CT, Lu YC, Lu T, Chi CC, Tseng LL, Liu SI, Cheng JS, Kuo CC, Liang WZ, Jan CR. Celecoxib-induced increase in cytosolic Ca(2+) levels and apoptosis in HA59T human hepatoma cells. Hum Exp Toxicol 2014; 33:1089-98. [PMID: 24972620 DOI: 10.1177/0960327112472996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Celecoxib has been shown to have antitumor effect in previous studies but the mechanisms are unclear. The effect of celecoxib on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in HA59T human hepatoma cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. Celecoxib at concentrations of 10-50 μM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced by 80% by removing Ca(2+). Celecoxib induced Mn(2+) influx, leading to quenching of fura-2 fluorescence. Celecoxib-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin nearly abolished celecoxib-induced [Ca(2+)]i rise. Incubation with celecoxib abolished thapsigargin-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 abolished celecoxib-induced [Ca(2+)]i rise. At 1-50 μM, celecoxib inhibited cell viability by less than 20%, which was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid/acetoxy methyl (BAPTA/AM). Celecoxib (10-50 μM) also induced apoptosis. In sum, in HA59T hepatoma cells, celecoxib induced a [Ca(2+)]i rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. Celecoxib also caused cell death via apoptosis.
Collapse
Affiliation(s)
- H-H Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Y-C Lu
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Chi
- Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - L-L Tseng
- Department of Dentistry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - S-I Liu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - J-S Cheng
- Department of Medicine, Yongkang Veterans Hospital, Tainan, Taiwan
| | - C-C Kuo
- Institute of Nursing and Department of Nursing, Chang Gung Institute of Technology Chiayi Campus, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Li J, Xue L, Hao H, Li R, Luo J. Rapamycin combined with celecoxib enhanced antitumor effects of mono treatment on chronic myelogenous leukemia cells through downregulating mTOR pathway. Tumour Biol 2014; 35:6467-74. [PMID: 24682932 DOI: 10.1007/s13277-014-1820-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022] Open
Abstract
Chronic myelogenous leukemia is a neoplasm of myeloid progenitor cells. We recently found that rapamycin could induce G0/G1 phase arrest and apoptosis and inhibit proliferation of K562 cells through inhibiting mammalian target of rapamycin (mTOR) pathway. However, whether rapamycin has synergistic effects with other drugs in chronic myelogenous leukemia (CML) therapies remain unclear. Therefore, we examined the effect of rapamycin combined with celecoxib on K562 cells in vitro. The survival rates showed a significant decrease in rapamycin + celecoxib treatment group. The combination treatment also increased the G0/G1 phase cells as compared to rapamycin or celecoxib treatment alone (P < 0.05), accompanied with the decreased population of S phase cells. Meanwhile, the rate of apoptosis was 15.87 ± 2.21 % in rapamycin + celecoxib treatment group, significantly higher than that in mono treatment group (P < 0.05). Western blot and reverse transcription PCR (RT-PCR) analysis showed that the expressions of mTOR, 4E-BP1, and p70S6K were all significantly decreased in K562 cells after rapamycin + celecoxib treatment (P < 0.05). In conclusion, rapamycin combined with celecoxib could induce cell cycle arrest and apoptosis and decrease the expressions of mTOR, 4E-BP1, and p70S6K. It suggested that the combination could enhance the antitumor effects of mono treatment on CML cells through downregulating mTOR pathway.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Celecoxib
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Phosphorylation/drug effects
- Pyrazoles/administration & dosage
- Signal Transduction/drug effects
- Sirolimus/administration & dosage
- Sulfonamides/administration & dosage
- TOR Serine-Threonine Kinases/biosynthesis
- TOR Serine-Threonine Kinases/genetics
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, China
| | | | | | | | | |
Collapse
|
17
|
Frolov RV, Singh S. Celecoxib and ion channels: a story of unexpected discoveries. Eur J Pharmacol 2014; 730:61-71. [PMID: 24630832 DOI: 10.1016/j.ejphar.2014.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Celecoxib (Celebrex), a highly popular selective inhibitor of cyclooxygenase-2, can modulate ion channels and alter functioning of neurons and myocytes at clinically relevant concentrations independently of cyclooxygenase inhibition. In experimental systems varying from Drosophila to primary mammalian and human cell lines, celecoxib inhibits many voltage-activated Na(+), Ca(2+), and K(+) channels, including NaV1.5, L- and T-type Ca(2+) channels, KV1.5, KV2.1, KV4.3, KV7.1, KV11.1 (hERG), while stimulating other K(+) channels-KV7.2-5 and, possibly, KV11.1 (hERG) channels under certain conditions. In this review, we summarize the information currently available on the effects of celecoxib on ion channels, examine mechanistic aspects of drug action and the concomitant changes at the cellular and organ levels, and discuss these findings in the therapeutic context.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physical Sciences, Division of Biophysics, University of Oulu, PO Box 3000, 90014 Oulun Yliopisto, Finland.
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
18
|
El-Gowelli HM, Helmy MW, Ali RM, El-Mas MM. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade. Toxicol Appl Pharmacol 2014; 275:88-95. [PMID: 24462674 DOI: 10.1016/j.taap.2014.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET(B) receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β₁, TGF-β₁). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET(B) receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET(B) receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ETB receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET(B) receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats.
Collapse
Affiliation(s)
- Hanan M El-Gowelli
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Rabab M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Zheng M, Jiang J, Tang YL, Liang XH. Oncogene and non-oncogene addiction in inflammation-associated cancers. Future Oncol 2013; 9:561-73. [PMID: 23560378 DOI: 10.2217/fon.12.202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many cancers originate in tissues that are chronically inflamed, and the inflammatory microenvironment is considered to promote the progression of malignancy, including initiation, growth, angiogenesis, invasion and metastasis. The molecular mechanism of inflammation-induced progression of cancers has been widely discussed. Oncogene and non-oncogene addiction have been proposed as two distinct but complementary theories to explain the initiation and development of cancers. Furthermore, they also play a role in cancer-associated inflammation. A solid understanding of oncogene and non-oncogene addiction in cancer-associated inflammatory microenvironments will help to exploit cancer drug targets for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Min Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Novel combination of sorafenib and celecoxib provides synergistic anti-proliferative and pro-apoptotic effects in human liver cancer cells. PLoS One 2013; 8:e65569. [PMID: 23776502 PMCID: PMC3680460 DOI: 10.1371/journal.pone.0065569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023] Open
Abstract
Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies.
Collapse
|
21
|
McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012; 3:1505-21. [PMID: 23455493 PMCID: PMC3681490 DOI: 10.18632/oncotarget.802] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. Predicting new indications for approved drugs using a proteochemometric method. J Med Chem 2012; 55:6832-48. [PMID: 22780961 PMCID: PMC3419493 DOI: 10.1021/jm300576q] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching, or simple in silico ligand docking. We now describe a novel rapid computational proteochemometric method called "train, match, fit, streamline" (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology, and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3671 FDA approved drugs across 2335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84%, and 91% for agents ranked in the top 10, 20, 30, and 40, respectively, out of all 3671 drugs. Drugs ranked in the top 1-40 that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an antiparasitic with recently discovered and unexpected anticancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity and angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27 000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets.
Collapse
Affiliation(s)
- Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC 20057, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cervello M, Bachvarov D, Lampiasi N, Cusimano A, Azzolina A, McCubrey JA, Montalto G. Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 2012; 11:2843-55. [PMID: 22801548 DOI: 10.4161/cc.21193] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced hepatocellular carcinoma (HCC). However, as the clinical application of sorafenib evolves, there is increasing interest in defining the mechanisms underlying its anti-tumor activity. Considering that this specific inhibitor could target unexpected molecules depending on the biologic context, a precise understanding of its mechanism of action could be critical to maximize its treatment efficacy, while minimizing adverse effects. Two human HCC cell lines (HepG2 and Huh7), carrying different biological and genetic characteristics, were used in this study to examine the intracellular events leading to sorafenib-induced HCC cell-growth inhibition. Sorafenib inhibited cell growth in both cell lines in a dose- and time-dependent manner and significantly altered expression levels of 826 and 2011 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in angiogenesis, apoptosis, transcription regulation, signal transduction, protein biosynthesis and modification were predominantly upregulated, while genes implicated in cell cycle control, DNA replication recombination and repair, cell adhesion, metabolism and transport were mainly downregulated upon treatment. However, each sorafenib-treated HCC cell line displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semiquantitative and quantitative RT-PCR and by western blotting. Many novel genes emerged from our transcriptomics analysis that had not previously been reported to be effected by sorafenib. Further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology Alberto Monroy, National Research Council (CNR), Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Barlow M, Edelman M, Glick RD, Steinberg BM, Soffer SZ. Celecoxib inhibits invasion and metastasis via a cyclooxygenase 2-independent mechanism in an in vitro model of Ewing sarcoma. J Pediatr Surg 2012; 47:1223-7. [PMID: 22703797 DOI: 10.1016/j.jpedsurg.2012.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND/INTRODUCTION Previously, we reported that celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, prevented lung metastases but did not affect tumor growth in a model of Ewing sarcoma. Cyclooxygenase-2 inhibition has been proposed as an antimetastatic strategy. The mechanism of action remains unclear. METHODS Ewing sarcoma cells were suspended in a soluble basement membrane extract (Cultrex; Trevigen, Inc, Gaithersburg, MD) and supplemented with celecoxib or with rofecoxib, a second COX-2 inhibitor, above a filter. Controls received solvent. After 48 hours, the cells that invaded through the basement membrane and filter were stained and counted. The assay was repeated with the addition of 500-nM prostaglandin E2 (PGE(2)). RESULTS Invasion was significantly decreased in the celecoxib groups compared with the control. The addition of PGE(2) did not overcome celecoxib inhibition. Rofecoxib did not significantly affect invasion compared with control either with or without PGE(2). CONCLUSIONS Celecoxib significantly inhibits invasion of Ewing sarcoma cells in vitro. Prostaglandin E2, a downstream product of COX-2, did not reverse in vitro inhibition, suggesting that celecoxib acts through a COX-2-independent mechanism. This is further supported by the failure of rofecoxib to inhibit invasion despite more selectively inhibiting COX-2.
Collapse
Affiliation(s)
- Meade Barlow
- Division of Pediatric Surgery, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040, USA
| | | | | | | | | |
Collapse
|
25
|
Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 2012; 3:236-60. [PMID: 22470194 PMCID: PMC3359882 DOI: 10.18632/oncotarget.466] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/31/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies. Although the clinical diagnosis and management of early-stage HCC has improved significantly, HCC prognosis is still extremely poor. Furthermore, advanced HCC is a highly aggressive tumor with a poor or no response to common therapies. Therefore, new effective and well-tolerated therapy strategies are urgently needed. Targeted therapies have entered the field of anti-neoplastic treatment and are being used on their own or in combination with conventional chemotherapy drugs. Molecular-targeted therapy holds great promise in the treatment of HCC. A new therapeutic opportunity for advanced HCC is the use of sorafenib (Nexavar). On the basis of the recent large randomized phase III study, the Sorafenib HCC Assessment Randomized Protocol (SHARP), sorafenib has been approved by the FDA for the treatment of advanced HCC. Sorafenib showed to be able to significantly increase survival in patients with advanced HCC, establishing a new standard of care. Despite this promising breakthrough, patients with HCC still have a dismal prognosis, as it is currently the major cause of death in cirrhotic patients. Nevertheless, the successful results of the SHARP trial underscore the need for a comprehensive understanding of the molecular pathogenesis of this devastating disease. In this review we summarize the most important studies on the signaling pathways implicated in the pathogenesis of HCC, as well as the newest emerging drugs and their potential use in HCC management.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology, "Alberto Monroy" National Research Council (C.N.R), Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Lampiasi N, Azzolina A, Umezawa K, Montalto G, McCubrey JA, Cervello M. The novel NF-κB inhibitor DHMEQ synergizes with celecoxib to exert antitumor effects on human liver cancer cells by a ROS-dependent mechanism. Cancer Lett 2012; 322:35-44. [PMID: 22343223 DOI: 10.1016/j.canlet.2012.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
In a previous work of ours dehydroxymethyl-epoxyquinomicin (DHMEQ), an inhibitor of NF-κB, was shown to induce apoptosis through Reactive Oxygen Species (ROS) production in hepatoma cells. The present study demonstrated that DHMEQ cooperates with Celecoxib (CLX) to decrease NF-κB DNA binding and to inhibit cell growth and proliferation more effectively than treatment with these single agents alone in the hepatoma cell lines HA22T/VGH and Huh-6. ROS production induced by the DHMEQ-CLX combination in turn generated the expression of genes involved in endoplasmic reticulum (ER) stress and silencing TRB3 mRNA significantly decreased DHMEQ-CLX-induced cell growth inhibition. Moreover, the DHMEQ-CLX combination was associated with induction of PARP cleavage and down-regulation of the anti-apoptotic proteins Bcl-2, Mcl-1 and survivin, as well as activated Akt. CD95 and CD95 ligand expression increased synergistically in the combination treatment, which was reversed in the presence of NAC. Knockdown of CD95 mRNA expression significantly decreased DHMEQ-CLX-induced cell growth inhibition in both cell lines. These data suggest that the DHMEQ-CLX combination kills hepatoma cells via ROS production, ER stress response and the activation of intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|