1
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova MK, Shirmanova M. Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells. Int J Mol Sci 2023; 24:12186. [PMID: 37569560 PMCID: PMC10419023 DOI: 10.3390/ijms241512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Alexandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Elena Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia;
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London (White City Campus), London W12 0BZ, UK;
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| |
Collapse
|
2
|
Thorel E, Clergeaud F, Rodrigues AMS, Lebaron P, Stien D. A Comparative Metabolomics Approach Demonstrates That Octocrylene Accumulates in Stylophora pistillata Tissues as Derivatives and That Octocrylene Exposure Induces Mitochondrial Dysfunction and Cell Senescence. Chem Res Toxicol 2022; 35:2160-2167. [PMID: 36318224 DOI: 10.1021/acs.chemrestox.2c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this work was to study the effect of octocrylene on Stylophora pistillata and to compare the metabolomic response of this coral species to that obtained with Pocillopora damicornis. When S. pistillata coral was exposed to octocrylene, it accumulated octocrylene derivatives similar to P. damicornis. Octocrylene-fatty acid conjugates were found, as well as octocrylene heterosides. Furthermore, the tissue concentrations of various acylcarnitines and three sphingoid bases increased significantly. This phenomenon was indicative of mitochondrial dysfunction and the induction of cellular senescence processes in exposed corals. Overall, the responses of the two corals to octocrylene pollution were consistent. The proven impact of octocrylene on a second coral species suggests that potential environmental octocrylene pollution could impact many reef-building species. Furthermore, this work demonstrates that octocrylene may be modified in vivo by many organisms and that levels of octocrylene contamination in the food chain have probably been underestimated until now.
Collapse
Affiliation(s)
- Evane Thorel
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Fanny Clergeaud
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.,Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, FR3724, 66650 Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbienne, UAR3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Botet-Carreras A, Montero MT, Sot J, Domènech Ò, Borrell JH. Engineering and development of model lipid membranes mimicking the HeLa cell membrane. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Botet-Carreras A, Montero MT, Sot J, Domènech Ò, Borrell JH. Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids Surf B Biointerfaces 2020; 196:111288. [PMID: 32759004 DOI: 10.1016/j.colsurfb.2020.111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
In this work, based on several studies, we develop an artificial lipid membrane to mimic the HeLa cell membrane using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) and cholesterol (CHOL). This is then a means to further study the fusion process of specific engineered liposomes. To characterize the mimicked HeLa cell membrane, we determined a series of surface pressure-area (π-A) isotherms and the isothermal compression modulus was calculated together with the dipole moment normal to the plane of the monolayer. The existence of laterally segregated domains was assessed using a fluorescence technique (Laurdan) and two microscopy techniques: Brewster angle microscopy (BAM) and atomic force microscopy (AFM) of Langmuir-Blodgett films (LBs) extracted at 30 mN m-1. To examine the nature and composition of the observed domains, force spectroscopy (FS) based on AFM was applied to the LBs. Finally, two engineered liposome formulations were tested in a fusion assay against mimicked HeLa cell membrane LBs, showing good results and thereby opening the door to further assays and uses.
Collapse
Affiliation(s)
- Adrià Botet-Carreras
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - M Teresa Montero
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC-UPV/HEU, Campus Universitario, 48940, Leioa, Basque Country, Spain
| | - Òscar Domènech
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain
| | - Jordi H Borrell
- Secció de Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona (UB), 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Analytical Strategies in Lipidomics for Discovery of Functional Biomarkers from Human Saliva. DISEASE MARKERS 2019; 2019:6741518. [PMID: 31885741 PMCID: PMC6914909 DOI: 10.1155/2019/6741518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023]
Abstract
Human saliva is increasingly being used and validated as a biofluid for diagnosing, monitoring systemic disease status, and predicting disease progression. The discovery of biomarkers in saliva biofluid offers unique opportunities to bypass the invasive procedure of blood sampling by using oral fluids to evaluate the health condition of a patient. Saliva biofluid is clinically relevant since its components can be found in plasma. As salivary lipids are among the most essential cellular components of human saliva, there is great potential for their use as biomarkers. Lipid composition in cells and tissues change in response to physiological changes and normal tissues have a different lipid composition than tissues affected by diseases. Lipid imbalance is closely associated with a number of human lifestyle-related diseases, such as atherosclerosis, diabetes, metabolic syndromes, systemic cancers, neurodegenerative diseases, and infectious diseases. Thus, identification of lipidomic biomarkers or key lipids in different diseases can be used to diagnose diseases and disease state and evaluate response to treatments. However, further research is needed to determine if saliva can be used as a surrogate to serum lipid profiles, given that highly sensitive methods with low limits of detection are needed to discover salivary biomarkers in order to develop reliable diagnostic and disease monitoring salivary tests. Lipidomic methods have greatly advanced in recent years with a constant advance in mass spectrometry (MS) and development of MS detectors with high accuracy and high resolution that are able to determine the elemental composition of many lipids.
Collapse
|
6
|
Lee SH, Hong SH, Tang CH, Ling YS, Chen KH, Liang HJ, Lin CY. Mass spectrometry-based lipidomics to explore the biochemical effects of naphthalene toxicity or tolerance in a mouse model. PLoS One 2018; 13:e0204829. [PMID: 30273358 PMCID: PMC6166967 DOI: 10.1371/journal.pone.0204829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
Naphthalene causes mouse airway epithelial injury. However, repeated exposures of naphthalene result in mouse airway tolerance. Previous results showed that toxicity or tolerance was correlated with changes of phosphorylcholine-containing lipids. In this study, a mass spectrometry-based lipidomic approach was applied to examine the effects of naphthalene-induced injury or tolerance in the male ICR mice. The injury model was vehicle x 7 plus 300 mg/kg naphthalene while the tolerant one was 200 mg/kg daily x 7 followed by 300 mg/kg naphthalene on day 8. The lung, liver, kidney, and serum samples were collected for profiles of phosphorylcholine-containing lipids including phosphatidylcholines (PCs) and sphingomyelins (SMs). A partial least-square-discriminate analysis model showed different lung phosphorylcholine-containing lipid profiles from the injured, tolerant, and control groups. Perturbation of diacyl-PCs and plasmenylcholines may be associated with enhanced membrane flexibility and anti-oxidative mechanisms in the lungs of tolerant mice. Additionally, alterations of lyso-PCs and SMs may be responsible for pulmonary dysfunction and inflammation in the lungs of injured mice. Moreover, serum PC(16:0/18:1) has potential to reflect naphthalene-induced airway injuries. Few phosphorylcholine-containing lipid alterations were found in the mouse livers and kidneys across different treatments. This study revealed the changes in lipid profiles associated with the perturbations caused by naphthalene tolerance and toxicity; examination of lipids in serum may assist biomarker development with the potential for application in the human population.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Si-Han Hong
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Yee Soon Ling
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ke-Han Chen
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Is Lipidomic the Answer to the Search of a Biomarker for Organ Preservation Protocol in Head and Neck Squamous Cell Carcinoma? Pathol Oncol Res 2017; 24:931-935. [PMID: 29130149 DOI: 10.1007/s12253-017-0336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
In the last decade organ preservation protocols based on chemoradiotherapy (CRT) has been showing the possibility of preserving function without jeopardizing survival for locally advanced head and neck squamous cell carcinoma (HNSCC). Still, only a percentage of the patients will benefit from this approach and, to date, no biomarkers are known to correctly predict these patients. More recently, modern mass spectrometry method has been used to determine metabolic profiles, and lipidomics, in particular, emerged as a new field of study in oncology and other diseases. This study aimed to analyze the lipid profile on saliva from patients undergoing to a prospective, single center, open-label, non-randomized phase II trial for organ preservation on HNSCC. The lipid analysis was performed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Multivariate statistical analyses based on principal component analysis and orthogonal partial least square-discriminant analysis were applied to MALDI-TOF-MS data to visualize differences between the lipid profiles and identify potential biomarkers. The results assisted on distinguishing complete responders from non-responders to the treatment protocol. In conclusion, we demonstrated that a group of lipids is differentially abundant in saliva from HNSCC patients submitted to an organ preservation protocol, being able to differentiate responders from non-responders. These results suggest the potential use of lipid biomarkers to identify patients who may benefit from this treatment. Also, we showed that saliva testing might be routinely used in clinical practice, for being a non-invasive alternative to blood testing, besides inexpensive and easy to obtain.
Collapse
|
8
|
LC-MS Based Sphingolipidomic Study on A2780 Human Ovarian Cancer Cell Line and its Taxol-resistant Strain. Sci Rep 2016; 6:34684. [PMID: 27703266 PMCID: PMC5050431 DOI: 10.1038/srep34684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance.
Collapse
|
9
|
Rosa A, Piras A, Nieddu M, Putzu D, Cesare Marincola F, Falchi AM. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells. Food Funct 2016; 7:4092-103. [DOI: 10.1039/c6fo00914j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We explored the changes in viability and lipid profile occurring in cancer cells, melanoma cells (B16F10 cells) and cervical carcinoma cells (HeLa cells), when exposed to an n-3 PUFA-rich oil obtained by SFE-CO2 extraction from Mugil cephalus processed roe (bottarga).
Collapse
Affiliation(s)
- A. Rosa
- Department of Biomedical Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. Piras
- Department of Chemical and Geological Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - M. Nieddu
- Department of Biomedical Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - D. Putzu
- Department of Biomedical Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - F. Cesare Marincola
- Department of Chemical and Geological Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| | - A. M. Falchi
- Department of Biomedical Sciences
- University of Cagliari
- Cittadella Universitaria
- 09042 Monserrato
- Italy
| |
Collapse
|
10
|
Corsetto PA, Ferrara G, Buratta S, Urbanelli L, Montorfano G, Gambelunghe A, Chiaradia E, Magini A, Roderi P, Colombo I, Rizzo AM, Emiliani C. Changes in Lipid Composition During Manganese-Induced Apoptosis in PC12 Cells. Neurochem Res 2015; 41:258-69. [DOI: 10.1007/s11064-015-1785-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/01/2023]
|
11
|
del Solar V, Lizardo D, Li N, Hurst J, Brais C, Atilla-Gokcumen G. Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. ACTA ACUST UNITED AC 2015; 22:1662-70. [DOI: 10.1016/j.chembiol.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
|
12
|
Rosa A, Murgia S, Putzu D, Meli V, Falchi AM. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chem Phys Lipids 2015; 191:96-105. [DOI: 10.1016/j.chemphyslip.2015.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022]
|
13
|
Chen WL, Lin CY, Yan YH, Cheng KT, Cheng TJ. Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter. MOLECULAR BIOSYSTEMS 2015; 10:3163-9. [PMID: 25236678 DOI: 10.1039/c4mb00435c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study elucidated the underlying pathophysiological changes that occur after chronic ambient fine particulate matter (PM2.5) exposure via a lipidomic approach. Five male Sprague-Dawley rats were continually whole-body exposed to ambient air containing PM2.5 at 16.7 ± 10.1 μg m(-3) from the outside of the building for 8 months, whereas a control group (n = 5) inhaled filtered air. Phosphorylcholine-containing lipids were extracted from lung tissue and profiled using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The phosphatidylcholine (PC) signal features of the two groups were compared using partial least squares discriminant analysis (PLS-DA) and Wilcoxon rank sum tests. The PC profile of the exposure group differed from that of the control group; the R(2)Y and Q(2) were 0.953 and 0.677, respectively, in the PLS-DA model. In the exposure group, a significant 0.66- to 0.80-fold reduction in lyso-PC levels, which may have resulted from repeated inflammation, was observed. Decreased surfactant PCs by 16% at most may indicate injuries to alveolar type II cells. Cell function and cell signalling are likely to be altered because the decrease in unsaturated PCs may reduce membrane fluidity. Accompanied by the decline in plasmenylcholines, decreased unsaturated PCs may indicate the attack of reactive oxygen species generated by PM2.5 exposure. The physiological findings conformed to the histopathological changes in the exposed animals. PC profiling using UPLC-MS/MS-based lipidomics is sensitive for reflecting pathophysiological perturbations in the lung after long-term and low concentration PM2.5 exposure.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Occupational Health and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei City 100, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Yu Y, Vidalino L, Anesi A, Macchi P, Guella G. A lipidomics investigation of the induced hypoxia stress on HeLa cells by using MS and NMR techniques. MOLECULAR BIOSYSTEMS 2014; 10:878-90. [PMID: 24496110 DOI: 10.1039/c3mb70540d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Induced hypoxia stress on cervical cancer derived cells (HeLa cells) leads to significant changes in their membrane lipid profiles. The lipidome of HeLa cells was characterized by a joint approach wherein liquid chromatography-mass spectrometry (LC-MS) analysis was followed by high resolution NMR measurements. Multivariate data analysis showed apparent separation between control and hypoxia-treated HeLa cells and thus demonstrated hypoxia effects on lipid metabolism. The most striking finding was that hypoxia stimulation significantly reduced the total amount of cellular phosphoinositols (PI) but caused a prominent increase in the amount of lyso phosphocholines (lyso-PC) and lyso phosphoethanolamines (lyso-PE). The observed decrease of PI amount under hypoxic conditions is probably due to the accumulation of cellular myo-inositol, which is known to play a critical role in de novo synthesis of PI. Moreover, our study suggests that polyunsaturated phospholipid species are stronger biomarkers for discriminating the effect of hypoxia treatment. The evaluation of changes in the average unsaturation index (UI) of the membrane lipids acyl chains reveals that UI slightly increases in several lipid classes, thus affecting membrane fluidity and further membrane-dependent functions. The plausible mechanisms by which HeLa cells adapt to hypoxia conditions are also briefly reported.
Collapse
Affiliation(s)
- Yang Yu
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy.
| | | | | | | | | |
Collapse
|
15
|
Derenne A, Vandersleyen O, Goormaghtigh E. Lipid quantification method using FTIR spectroscopy applied on cancer cell extracts. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1200-9. [PMID: 24157469 DOI: 10.1016/j.bbalip.2013.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022]
Abstract
Reprogramming energy metabolism constitutes one of the hallmarks of cancer. Changes in lipid composition of cell membranes also appear early in carcinogenesis. Quantification of various molecules such as lipids evidences the modifications in the metabolism of tumour cells and can serve as potential markers for cancer diagnosis and treatment. Fourier Transform Infrared (FTIR) spectroscopy is a powerful tool used for the detection and characterization of various types of molecules. This technique remains an attractive approach as it is cheap (equipment and reagents), does not require high grade solvents or expensive internal standards, equipment is widely available in standard laboratories and the method is robust and suitable for routine analyses. In this work we established partial least square (PLS) models based on FTIR spectra able to quantify lipids in complex mixtures such as cell extracts. In the first part, we attempted to build PLS models with FTIR spectra of 53 mixtures of 8 well-characterized pure lipids. Second, the PLS models were verified using FTIR spectra of mixtures that did not contribute to the calibration. The third step was the validation of the models on lipid cell extracts. In order to obtain reference values for cell extracts, high performance liquid chromatography was carried out by AVANTI. The lipid distribution were globally similar with both techniques, PLS models and chromatography. Finally, the models were applied to determine the lipid composition of cells exposed to four treatments. We could not evidence significant changes in the lipid composition of cell extracts after treatment, in terms of polar head groups. However, the models established in this study appear reliable and could be applied for high throughput measurements. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Allison Derenne
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02, Université Libre de Bruxelles, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium
| | - Olivier Vandersleyen
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02, Université Libre de Bruxelles, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02, Université Libre de Bruxelles, Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium.
| |
Collapse
|