1
|
Yan Y, Liu Y, Li J, Li Y, Wu H, Li H, Ma X, Tang Y, Tong Y, Yi K, Liang Q, Liu Z. A Molecular Switch-Integrated Nanoplatform Enables Photo-Unlocked Antibacterial Drug Delivery for Synergistic Abscess Therapy. Adv Healthc Mater 2023; 12:e2301157. [PMID: 37392145 DOI: 10.1002/adhm.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Drug delivery systems (DDSs) capable of sequential multistage drug release are urgently needed for antibacterial applications. Herein, a molecular switch-integrated, photo-responsive nanoplatform is reported based on hollow mesoporous silica nanospheres (HMSN) loaded with silver nanoparticles (Ag NPs), vancomycin (Van), and hemin (HAVH) for bacteria elimination and abscess therapy. Upon near-infrared (NIR) light irradiation, the molecular switch, hemin, can effuse from the mesopores of HMSN, triggering the release of pre-loaded Ag+ and Van, which enables photothermal-modulated drug release and synergistic photothermal-chemo therapy (PTT-CHT). The HAVH_NIR irreversibly disrupts the bacterial cell membrane, facilitating the penetration of Ag+ and Van. It is found that these compounds restrain the transcription and translation of ribosomes and lead to rapid bacterial death. Furthermore, hemin can effectively inhibit excessive inflammatory responses associated with the treatment, promoting accelerated wound healing in a murine abscess model. This work presents a new strategy for antibacterial drug delivery with high controllability and extendibility, which may benefit the development of smart multifunctional nanomedicine for diseases not limited to bacterial infections.
Collapse
Affiliation(s)
- Yunxiang Yan
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yong Liu
- School of Science, Hainan University, Haikou, 570228, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Haoheng Wu
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yuan Tong
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| |
Collapse
|
2
|
Ribeiro M, Sousa M, Borges V, Gomes JP, Duarte S, Isidro J, Vieira L, Torres C, Santos H, Capelo JL, Poeta P, Igrejas G. Bioinformatics study of expression from genomes of epidemiologically related MRSA CC398 isolates from human and wild animal samples. J Proteomics 2022; 268:104714. [PMID: 36058542 DOI: 10.1016/j.jprot.2022.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
One of the most important livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) genetic lineages is the clonal complex (CC) 398, which can cause typical S. aureus-associated infections in people. In this work, whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics were applied to study the genetic characteristics of three MRSA CC398 isolates recovered from humans (strains C5621 and C9017), and from an animal (strain OR418). Of the three strains, C9017 presented the broadest resistance genotype, including resistance to fluroquinolone, clindamycin, tiamulin, macrolide and aminoglycoside antimicrobial classes. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains. For example, the immunoglobulin-binding protein Sbi was more abundant in OR418. Considering that Sbi is a multifunctional immune evasion factor in S. aureus, the results point to OR418 strain having high zoonotic potential. Overall, multiomics biomarker signatures can assume an important role to advance precision medicine in the years to come. SIGNIFICANCE: MRSA is one of the most representative drug-resistant pathogens and its dissemination is increasing due to MRSA capability of establishing new reservoirs. LA-MRSA is considered an emerging problem worldwide and CC398 is one of the most important genetic lineages. In this study, three MRSA CC398 isolates recovered from humans and from a wild animal were analyzed through whole-genome sequencing, RNA-sequencing, and gel-based comparative proteomics in order to gather systems-wide omics data and better understand the genetic characteristics of this lineage to identify distinctive markers and genomic features of relevance to public health. The scn, sak, and chp genes of the immune evasion cluster system were solely detected in OR418. Pangenome analysis showed a total of 288 strain-specific genes, most of which are hypothetical or phage-related proteins. OR418 had the most pronounced genetic differences. RNAIII (δ-hemolysin) gene was clearly the most expressed gene in OR418 and C5621, but it was not detected in C9017. Significant differences in the proteome profiles were found between strains.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal
| | - Margarida Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1600-609 Lisbon, Portugal; Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Carmen Torres
- Biochemistry and Molecular Biology Unit, Faculty of Science and Technology, University of La Rioja, 26006 Logroño, Spain
| | - Hugo Santos
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - José Luís Capelo
- BIOSCOPE Research Group, LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; PROTEOMASS Scientific Society, Madan Parque, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal; Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real 5000-801, Portugal; CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), Faculty of Science and Technology, University Nova of Lisbon, 2829-546 Caparica, Portugal.
| |
Collapse
|