1
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic Radiation and Biophoton Emission in Neuronal Communication and Neurodegenerative Diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00115-9. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey.
| |
Collapse
|
2
|
Velásquez H, Fernández M, Ruette F. A literature review of the increased intracellular free calcium concentration by biofield therapy or laser exposure. An explanation by using a theoretical study of hydrated calcium ions. Explore (NY) 2024; 20:298-305. [PMID: 37926604 DOI: 10.1016/j.explore.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION A revision of several experimental results on cells shows that electromagnetic radiation, either produced by biofield therapy (BFT) or laser, induced an increase in intracellular free calcium concentration. An explanation of this phenomenon is proposed. METHODS Quantum chemistry calculations were performed on Ca2+ with different degrees of hydration with the DFT/r2SCAN-3c method together with the implicit solvation model SMD. RESULTS Ca2+ dehydration energy by quantum calculations, in an aqueous medium, coincides with the experimental results of the energy of the photon emitted in biofield therapies and lasers. This strongly suggests that the increased intracellular free calcium concentration is because of calcium ion dehydration upon the application of radiation. The Ca2+ dehydration increases the membrane potential due to an augment of the net charge on Ca2+ and it moves near the membrane by the attraction of its negative ions. The voltage-dependent channels are also activated by this membrane potential. CONCLUSION The increased intracellular Ca2+ concentration occurs with biofield therapy (BFT) or laser. A novel explanation is given based on resonance-induced Ca2+ dehydration with applied radiation, supported by experimental data and theoretical calculations.
Collapse
Affiliation(s)
- Hordep Velásquez
- Laboratorio de Química Computacional, Centro de Química "Dr. Gabriel Chuchani", Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal 21827, Caracas, 1020A, Venezuela
| | - Miguel Fernández
- Laboratorio de Química Computacional, Centro de Química "Dr. Gabriel Chuchani", Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal 21827, Caracas, 1020A, Venezuela
| | - Fernando Ruette
- Laboratorio de Química Computacional, Centro de Química "Dr. Gabriel Chuchani", Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal 21827, Caracas, 1020A, Venezuela.
| |
Collapse
|
3
|
Mould RR, Mackenzie AM, Kalampouka I, Nunn AVW, Thomas EL, Bell JD, Botchway SW. Ultra weak photon emission-a brief review. Front Physiol 2024; 15:1348915. [PMID: 38420619 PMCID: PMC10899412 DOI: 10.3389/fphys.2024.1348915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cells emit light at ultra-low intensities: photons which are produced as by-products of cellular metabolism, distinct from other light emission processes such as delayed luminescence, bioluminescence, and chemiluminescence. The phenomenon is known by a large range of names, including, but not limited to, biophotons, biological autoluminescence, metabolic photon emission and ultraweak photon emission (UPE), the latter of which shall be used for the purposes of this review. It is worth noting that the photons when produced are neither 'weak' nor specifically biological in characteristics. Research of UPE has a long yet tattered past, historically hamstrung by a lack of technology sensitive enough to detect it. Today, as technology progresses rapidly, it is becoming easier to detect and image these photons, as well as to describe their function. In this brief review we will examine the history of UPE research, their proposed mechanism, possible biological role, the detection of the phenomenon, and the potential medical applications.
Collapse
Affiliation(s)
- Rhys R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alasdair M Mackenzie
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| | - Ifigeneia Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Alistair V W Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
- The Guy Foundation, Beaminster, United Kingdom
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Stanley W Botchway
- OCTOPUS, Central Laser Facility, Science and Technology Facilities Council, Didcot, United Kingdom
| |
Collapse
|
4
|
Sefati N, Esmaeilpour T, Salari V, Zarifkar A, Dehghani F, Ghaffari MK, Zadeh-Haghighi H, Császár N, Bókkon I, Rodrigues S, Oblak D. Monitoring Alzheimer's disease via ultraweak photon emission. iScience 2024; 27:108744. [PMID: 38235338 PMCID: PMC10792242 DOI: 10.1016/j.isci.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
In an innovative experiment, we detected ultraweak photon emission (UPE) from the hippocampus of male rat brains and found significant correlations between Alzheimer's disease (AD), memory decline, oxidative stress, and UPE intensity. These findings may open up novel methods for screening, detecting, diagnosing, and classifying neurodegenerative diseases, particularly AD. The study suggests that UPE from the brain's neural tissue can serve as a valuable indicator. It also proposes the development of a minimally invasive brain-computer interface (BCI) photonic chip for monitoring and diagnosing AD, offering high spatiotemporal resolution of brain activity. The study used a rodent model of sporadic AD, demonstrating that STZ-induced sAD resulted in increased hippocampal UPE, which was associated with oxidative stress. Treatment with donepezil reduced UPE and improved oxidative stress. These findings support the potential utility of UPE as a screening and diagnostic tool for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Niloofar Sefati
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 1N4, Canada
| | | | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary
- Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| | - Serafim Rodrigues
- MCEN Team, Basque Center for Applied Mathematics, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Quantum Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
6
|
Vieira WF, Gersten M, Caldieraro MAK, Cassano P. Photobiomodulation for Major Depressive Disorder: Linking Transcranial Infrared Light, Biophotons and Oxidative Stress. Harv Rev Psychiatry 2023; 31:124-141. [PMID: 37171473 DOI: 10.1097/hrp.0000000000000363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Incompletely treated major depressive disorder (MDD) poses an enormous global health burden. Conventional treatment for MDD consists of pharmacotherapy and psychotherapy, though a significant number of patients do not achieve remission with such treatments. Transcranial photobiomodulation (t-PBM) is a promising novel therapy that uses extracranial light, especially in the near-infrared (NIR) and red spectra, for biological and therapeutic effects. The aims of this Review are to evaluate the current clinical and preclinical literature on t-PBM in MDD and to discuss candidate mechanisms for effects of t-PBM in MDD, with specific attention to biophotons and oxidative stress. A search on PubMed and ClinicalTrials.gov identified clinical and preclinical studies using t-PBM for the treatment of MDD as a primary focus. After a systematic screening, only 19 studies containing original data were included in this review (9 clinical and 10 preclinical trials). Study results demonstrate consensus that t-PBM is a safe and potentially effective treatment; however, varying treatment parameters among studies complicate definitive conclusions about efficacy. Among other mechanisms of action, t-PBM stimulates the complex IV of the mitochondrial respiratory chain and induces an increase in cellular energy metabolism. We suggest that future trials include biological measures to better understand the mechanisms of action of t-PBM and to optimize treatment efficiency. Of particular interest going forward will be studying potential effects of t-PBM-an external light source on the NIR spectra-on neural circuitry implicated in depression.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- From Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA (Drs. Vieira, Gersten, Cassano); Department of Psychiatry, Harvard Medical School, Boston, MA (Drs. Vieira, Cassano); Department of Anatomy, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Sao Paulo, SP, Brazil (Dr. Vieira); Centro de Pesquisa Experimental (CPE) e Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil (Dr. Caldieraro); Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria e Medicina Legal, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil (Dr. Caldieraro)
| | | | | | | |
Collapse
|
7
|
Kurhaluk N, Tkachenko H, Tomin V. Invitro impact of a combination of red and infrared LEDs, infrared laser and magnetic field on biomarkers of oxidative stress and hemolysis of erythrocytes sampled from healthy individuals and diabetes patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112685. [PMID: 36921401 DOI: 10.1016/j.jphotobiol.2023.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
AIMS Low-intensity infrared laser irradiation with output emissions of the laser and LED for in vitro irradiation of plasma and erythrocyte samples collected from healthy individuals and diabetes mellitus (DM) patients was used in the current study. METHODS The generated emission was in the range 0.85-0.89 nm with pulse duration near 130 ns and repetition rates of pulses 50, 150, 600, and 1500 Hz, average power 0, 50, or 100 mW, in the range of 1-9 min for different 30 variants of irradiation. The levels of 2-thiobarbituric-acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), acid-induced resistance of erythrocytes, and activities of the main antioxidant enzymes were assessed in erythrocyte and plasma samples after irradiation. RESULTS The low-intensity infrared laser irradiation and low-intensity light emitted by a red LED decreased the lipid peroxidation levels in the erythrocytes of both healthy individuals and DM patients. A statistically significant decrease in TBARS and OMP levels and an increase in the TAC level were observed at the irradiation energy of 34.39 and 68.79 J/cm2 for samples collected from both healthy individuals and DM patients. The effects of the irradiation were accompanied by a statistically significant decrease in catalase activity of both healthy individuals and DM patients. CONCLUSIONS In many variants of the laser irradiation and low-intensity light emitted by a red LED used in our study, a decrease in the percent of hemolyzed erythrocytes was observed, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before the beginning of treatment, especially in DM patients.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
8
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
9
|
Du J, Deng T, Cao B, Wang Z, Yang M, Han J. The application and trend of ultra-weak photon emission in biology and medicine. Front Chem 2023; 11:1140128. [PMID: 36874066 PMCID: PMC9981976 DOI: 10.3389/fchem.2023.1140128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Ultra-weak bioluminescence, also known as ultra-weak photon emission (UPE), is one of the functional characteristics of biological organisms, characterized by specialized, low-energy level luminescence. Researchers have extensively studied UPE for decades, and the mechanisms by which UPE is generated and its properties have been extensively investigated. However, there has been a gradual shift in research focus on UPE in recent years toward exploring its application value. To better understand the application and trend of UPE in biology and medicine, we have conducted a review of relevant articles in recent years. Among the several topics covered in this review is UPE research in biology and medicine (including traditional Chinese medicine), primarily focused on UPE as a promising non-invasive tool for diagnosis and oxidative metabolism monitoring as well as a potential tool for traditional Chinese medicine research.
Collapse
Affiliation(s)
- Jinxin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Enhanced UV–Vis photodetector performance by optimizing interfacial charge transportation in the heterostructure by SnS and SnSe2. J Colloid Interface Sci 2022; 621:374-384. [DOI: 10.1016/j.jcis.2022.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
|
11
|
Liebert A, Pang V, Bicknell B, McLachlan C, Mitrofanis J, Kiat H. A Perspective on the Potential of Opsins as an Integral Mechanism of Photobiomodulation: It's Not Just the Eyes. Photobiomodul Photomed Laser Surg 2022; 40:123-135. [PMID: 34935507 DOI: 10.1089/photob.2021.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: To investigate the potential relationship between opsins and photobiomodulation. Background: Opsins and other photoreceptors occur in all phyla and are important in light-activated signaling and organism homeostasis. In addition to the visual opsin systems of the retina (OPN1 and OPN2), there are several non-visual opsins found throughout the body tissues, including encephalopsin/panopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5), as well as other structures that have light-sensitive properties, such as enzymes, ion channels, particularly those located in cell membranes, lysosomes, and neuronal structures such as the nodes of Ranvier. The influence of these structures on exposure to light, including self-generated light within the body (autofluorescence), on circadian oscillators, and circadian and ultradian rhythms have become increasingly reported. The visual and non-visual phototransduction cascade originating from opsins and other structures has potential significant mechanistic effects on tissues and health. Methods: A PubMed and Google Scholar search was made using the search terms "photobiomodulation", "light", "neuron", "opsins", "neuropsin", "melanopsin", "encephalopsin", "rhodopsin", and "chromophore". Results: This review was examined the influence of neuropsin (also known as kallikrein 8), encephalopsin, and melanopsin specifically on ion channel function, and more broadly on the central and peripheral nervous systems. The relationship between opsins 3, 4, and 5 and photobiomodulation mechanisms was evaluated, along with a proposed role of photobiomodulation through opsins and light-sensitive organelles as potential alleviators of symptoms and accelerators of beneficial regenerative processes. The potential clinical implications of this in musculoskeletal conditions, wounds, and in the symptomatic management of neurodegenerative disease was also examined. Conclusions: Systematic research into the pleotropic therapeutic role of photobiomodulation, mediated through its action on opsins and other light-sensitive organelles may assist in the future execution of safe, low-risk precision medicine for a variety of chronic and complex disease conditions, and for health maintenance in aging.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health Sciences, University of Sydney, Sydney, Australia.,Office of Governance and Research, San Hospital, Sydney, Australia
| | | | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, North Sydney, Australia
| | | | - John Mitrofanis
- Clinatec, Fonds de Dotation-CEA, Universitè Grenoble Alpes, Grenoble, France
| | - Hosen Kiat
- Department of Clinical Medicine, Macquarie University, Sydney, Australia.,Cardiac Health Institute, Sydney, Australia
| |
Collapse
|
12
|
Narrative Review of Russian, Ukrainian and English-Language Publications Investigating the Effects of Photobiomodulation on Red Blood Cell Physiology. Photobiomodul Photomed Laser Surg 2022; 40:98-111. [DOI: 10.1089/photob.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Victor EC, Goulardins J, Cardoso VO, Silva REC, Brugnera A, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Effect of Photobiomodulation in Lipopolysaccharide-Treated Myoblasts. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 39:30-37. [PMID: 33332202 DOI: 10.1089/photob.2019.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: To evaluate the effect of photobiomodulation (PBM) on cell viability, synthesis of nitric oxide (NO), and interleukin (IL)-6 inflammatory cytokine production in myoblasts cultured in the presence of lipopolysaccharides (LPSs). Methods: C2C12 myoblasts were treated with LPS and PBM using different parameters (wavelength: 780 nm; beam spot: 0.04 cm2; power output: 10 or 40 mW; energy density: 5 or 20 J/cm2; and 20-sec exposure time). Nonirradiated cells were used to the control group. Results: An increase in cell viability was found in both LPS groups in comparison with the control. PBM with the higher power output (40 mW) induced a reduction in cell viability. PBM also modulated the synthesis of NO in the myoblasts, but did not alter the expression of IL-6. Conclusions: Based on these findings, PBM is capable of modulating the cell viability and the production of NO in LPS-treated myoblasts and it is, therefore, a possible tool for the treatment of muscle injury caused by infection.
Collapse
Affiliation(s)
- Elis Cabral Victor
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Juliana Goulardins
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Vinicius Oliveira Cardoso
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Aldo Brugnera
- Biomedical Engineer Research Center (CEB), Universidade Camilo Castelo Branco, São José dos Campos, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
14
|
Van Wijk R, Van Wijk EP, Pang J, Yang M, Yan Y, Han J. Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front Physiol 2020; 11:717. [PMID: 32733265 PMCID: PMC7360823 DOI: 10.3389/fphys.2020.00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | | | - Jingxiang Pang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
15
|
Naveed M, Raees M, Liaqat I, Kashif M. Clastogenic ROS and biophotonics in precancerous diagnosis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-018-1488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Murugan NJ, Rouleau N, Karbowski LM, Persinger MA. Biophotonic markers of malignancy: Discriminating cancers using wavelength-specific biophotons. Biochem Biophys Rep 2017; 13:7-11. [PMID: 29202105 PMCID: PMC5699883 DOI: 10.1016/j.bbrep.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/26/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
Early detection is a critically important factor when successfully diagnosing and treating cancer. Whereas contemporary molecular techniques are capable of identifying biomarkers associated with cancer, surgical interventions are required to biopsy tissue. The common imaging alternative, positron-emission tomography (PET), involves the use of nuclear material which poses some risks. Novel, non-invasive techniques to assess the degree to which tissues express malignant properties are now needed. Recent developments in biophoton research have made it possible to discriminate cancerous cells from normal cells both in vitro and in vivo. The current study expands upon a growing body of literature where we classified and characterized malignant and non-malignant cell types according to their biophotonic activity. Using wavelength-exclusion filters, we demonstrate that ratios between infrared and ultraviolet photon emissions differentiate cancer and non-cancer cell types. Further, we identified photon sources associated with three filters (420-nm, 620-nm., and 950-nm) which classified cancer and non-cancer cell types. The temporal increases in biophoton emission within these wavelength bandwidths is shown to be coupled with intrisitic biomolecular events using Cosic's resonant recognition model. Together, the findings suggest that the use of wavelength-exclusion filters in biophotonic measurement can be employed to detect cancer in vitro. Biophoton emissions from cancer cells can be differentiated from normal cells. Using exclusion filters biophotons were measured in malignant and non-malignant cells. Cancer and non-cancer cells differed most notably as a function of UV-IR photon ratio. The results support the use of biophoton emissions for non-invasive cancer detection.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Tufts University, 200 Boston Ave, Medford, MA 02155, USA.,Quantum Biomolecular Laboratory, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.,Behavioural Neuroscience Programs, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | - Nicolas Rouleau
- Quantum Biomolecular Laboratory, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.,Behavioural Neuroscience Programs, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | - Lukasz M Karbowski
- Behavioural Neuroscience Programs, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | - Michael A Persinger
- Quantum Biomolecular Laboratory, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.,Behavioural Neuroscience Programs, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| |
Collapse
|
17
|
Kim HB, Baik KY, Choung PH, Chung JH. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 2017; 7:15927. [PMID: 29162863 PMCID: PMC5698451 DOI: 10.1038/s41598-017-15754-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
Photobiomodulation (PBM) therapy contributes to pain relief, wound healing, and tissue regeneration. The pulsed wave (PW) mode has been reported to be more effective than the continuous wave (CW) mode when applying PBM to many biological systems. However, the reason for the higher effectiveness of PW-PBM is poorly understood. Herein, we suggest using delayed luminescence (DL) as a reporter of mitochondrial activity after PBM treatment. DL originates mainly from mitochondrial electron transport chain systems, which produce reactive oxygen species (ROS) and adenosine triphosphate (ATP). The decay time of DL depends on the pulse frequencies of applied light, which correlate with the biological responses of human dental pulp stem cells (hDPSCs). Using a low-power light whose wavelength is 810 nm and energy density is 38 mJ/cm2, we find that a 300-Hz pulse frequency prolonged the DL pattern and enhanced alkaline phosphatase activity. In addition, we analyze mitochondrial morphological changes and their volume density and find evidence supporting mitochondrial physiological changes from PBM treatment. Our data suggest a new methodology for determining the effectiveness of PBM and the specific pulse frequency dependency of PBM in the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ku Youn Baik
- Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Salvi M, Rimini D, Molinari F, Bestente G, Bruno A. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:38001. [PMID: 28265648 DOI: 10.1117/1.jbo.22.3.038001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT’s physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.
Collapse
Affiliation(s)
- Massimo Salvi
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | - Daniele Rimini
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | - Filippo Molinari
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | | | - Alberto Bruno
- AOU Città della Salute e della Scienza di Torino-San Giovanni Antica Sede, Diabetology Department, Turin, Italy
| |
Collapse
|
19
|
Epigenetic Mechanisms of Integrative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4365429. [PMID: 28316635 PMCID: PMC5339524 DOI: 10.1155/2017/4365429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022]
Abstract
Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits.
Collapse
|
20
|
Berger CC, Cheston S, Stewart-Sicking J. Experiences of Healing Touch and Counseling on a Bereaved Population: A Grounded Theory. JOURNAL OF CREATIVITY IN MENTAL HEALTH 2016. [DOI: 10.1080/15401383.2016.1201032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhu HL, Cheng J, Zhang D, Liang C, Reckmeier CJ, Huang H, Rogach AL, Choy WCH. Room-Temperature Solution-Processed NiOx:PbI2 Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS NANO 2016; 10:6808-6815. [PMID: 27340899 DOI: 10.1021/acsnano.6b02425] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While methylammonium lead iodide (MAPbI3) with interesting properties, such as a direct band gap, high and well-balanced electron/hole mobilities, as well as long electron/hole diffusion length, is a potential candidate to become the light absorbers in photodetectors, the challenges for realizing efficient perovskite photodetectors are to suppress dark current, to increase linear dynamic range, and to achieve high specific detectivity and fast response speed. Here, we demonstrate NiOx:PbI2 nanocomposite structures, which can offer dual roles of functioning as an efficient hole extraction layer and favoring the formation of high-quality MAPbI3 to address these challenges. We introduce a room-temperature solution process to form the NiOx:PbI2 nanocomposite structures. The nanocomposite structures facilitate the growth of the compact and ordered MAPbI3 crystalline films, which is essential for efficient photodetectors. Furthermore, the nanocomposite structures work as an effective hole extraction layer, which provides a large electron injection barrier and favorable hole extraction as well as passivates the surface of the perovskite, leading to suppressed dark current and enhanced photocurrent. By optimizing the NiOx:PbI2 nanocomposite structures, a low dark current density of 2 × 10(-10) A/cm(2) at -200 mV and a large linear dynamic range of 112 dB are achieved. Meanwhile, a high responsivity in the visible spectral range of 450-750 nm, a large measured specific detectivity approaching 10(13) Jones, and a fast fall time of 168 ns are demonstrated. The high-performance perovskite photodetectors demonstrated here offer a promising candidate for low-cost and high-performance near-ultraviolet-visible photodetection.
Collapse
Affiliation(s)
- Hugh Lu Zhu
- Department of Electrical and Electronic Engineering, The University of Hong Kong , Pokfulam, Hong Kong, SAR China
| | - Jiaqi Cheng
- Department of Electrical and Electronic Engineering, The University of Hong Kong , Pokfulam, Hong Kong, SAR China
| | - Di Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong , Pokfulam, Hong Kong, SAR China
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah , Sharjah, United Arab Emirates
| | - Chunjun Liang
- Department of Electrical and Electronic Engineering, The University of Hong Kong , Pokfulam, Hong Kong, SAR China
| | - Claas J Reckmeier
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong , Kowloon, Hong Kong, SAR China
| | - He Huang
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong , Kowloon, Hong Kong, SAR China
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong , Kowloon, Hong Kong, SAR China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong , Pokfulam, Hong Kong, SAR China
| |
Collapse
|
22
|
Ribeiro BG, Alves AN, dos Santos LAD, Cantero TM, Fernandes KPS, Dias DDS, Bernardes N, De Angelis K, Mesquita-Ferrari RA. Red and Infrared Low-Level Laser Therapy Prior to Injury with or without Administration after Injury Modulate Oxidative Stress during the Muscle Repair Process. PLoS One 2016; 11:e0153618. [PMID: 27082964 PMCID: PMC4833286 DOI: 10.1371/journal.pone.0153618] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Muscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified. AIM To evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process. METHODS Wistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis. RESULTS Lipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group. CONCLUSION The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process.
Collapse
Affiliation(s)
| | - Agnelo Neves Alves
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | | | - Nathalia Bernardes
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kátia De Angelis
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Medicine Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Rehabilitation Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Biophotonics Department, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
23
|
Rizzo NR, Hank NC, Zhang J. Detecting presence of cardiovascular disease through mitochondria respiration as depicted through biophotonic emission. Redox Biol 2015; 8:11-7. [PMID: 26722839 PMCID: PMC4710795 DOI: 10.1016/j.redox.2015.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/10/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
AIMS Increased production of reactive oxygen species (ROS) in mitochondria, play an important role in the cardiovascular system. Furthermore, oxidative metabolism of mitochondria comprised of biophoton emissions, are linked to ROS and oxidative stress. In this review we investigated the association between the ability of ClearViewTM system (ClearView) to indicate the presence or absence of cardiovascular disease through mitochondria respiration as depicted through biophotonic emission. METHODS AND RESULTS One hundred and ninety-five out of the three hundred and fifty-three human subjects enrolled in this prospective, single site study had at least one cardiovascular related diagnosis. Measurements with ClearView consisted of scanning all 10 fingers twice. Images were captured through the ClearView software and analyzed to produce a scale that indicates the presence or absence of cardiovascular disease. The association of ClearView's ability to indicate the presence or absence of cardiovascular disease with a physician's diagnosis was assessed using odds ratios (OR) and area under ROC curve (AUC). Adjusting for age, OR of ClearView measurements conducted with capacitive barrier was 3.44 (95%CI: 2.13, 5.55) and the OR without the capacitive barrier was 2.15 (95%CI: 1.42, 3.23). The OR in men were 5.91 (95%CI: 2.35, 14.85) and 2.88 (95%CI: 1.38, 6.01), adjusting for age and corresponding to with and without capacitive barrier. The OR in women were 3.50 (95%CI: 1.86, 6.59) and 2.09 (95%CI: 1.20, 3.64) with and without capacitive barrier. AUCs for measurements with capacitive barrier were >0.90. CONCLUSION ClearView detected the presence or absence of cardiovascular disease independent of other conditions.
Collapse
Affiliation(s)
- Nancy R Rizzo
- EPIC Research & Diagnostics, Inc., 7659 E. Pinnacle Peak Road, Suite 115, Scottsdale, AZ 85255, USA.
| | - Nicole C Hank
- EPIC Research & Diagnostics, Inc., 7659 E. Pinnacle Peak Road, Suite 115, Scottsdale, AZ 85255, USA.
| | - Jian Zhang
- EPIC Research & Diagnostics, Inc., 7659 E. Pinnacle Peak Road, Suite 115, Scottsdale, AZ 85255, USA.
| |
Collapse
|
24
|
Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies. Stem Cells Int 2015; 2015:974864. [PMID: 26273309 PMCID: PMC4529981 DOI: 10.1155/2015/974864] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/14/2015] [Indexed: 12/24/2022] Open
Abstract
Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described.
Collapse
|
25
|
Iranifam M. Analytical applications of chemiluminescence methods for cancer detection and therapy. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Liebert AD, Bicknell BT, Adams RD. Protein conformational modulation by photons: a mechanism for laser treatment effects. Med Hypotheses 2013; 82:275-81. [PMID: 24424395 DOI: 10.1016/j.mehy.2013.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Responsiveness to low-level laser treatment (LLTT) at a wavelength of 450-910 nm has established it as an effective treatment of medical, veterinary and dental chronic pain, chronic inflammation conditions (arthritis and macular degeneration), wound repair, and lymphoedema, yet the mechanisms underlying the effectiveness of LLLT remain unclear. However, there is now sufficient evidence from recent research to propose an integrated model of LLLT action. The hypothesis presented in this paper is that external applications of photons (through laser at an appropriate dose) modulates the nervous system through an integrated mechanism. This stimulated mechanism involves protein-to-protein interaction, where two or more proteins bind together to facilitate molecular processes, including modification of proteins by members of SUMO (small ubiquitin-related modifier proteins) and also protein phosphorylation and tyrosination. SUMO has been shown to have a role in multiple nuclear and perinuclear targets, including ion channels, and in the maintenance of telomeres and the post-translational modification of genes. The consequence of laser application in treatment, therefore, can be seen as influencing the transmission of neural information via an integrated and rapid modulation of ion channels, achieved through both direct action on photo-acceptors (such as cytochrome c-oxidase) and through indirect modulation via enzymes, including tyrosine hydroxylase (TH), tyrosine kinases and tyrosine kinase receptors. This exogenous action then facilitates an existing photonic biomodulation mechanism within the body, and initiates ion channel modulation both in the periphery and the central nervous system (CNS). Evidence indicates that the ion channel modulation functions predominately through the potassium channels, including two pore leak channels (K2P), which act as signal integrators from the periphery to the cortex. Photonic action also transforms SUMOylation processes at the cell membrane, nucleus and telomeres via signalling processes from the mitochondria (which is the main target of laser absorption) to these targets. Under the hypothesis, these observed biological effects would play a part in the bystander effect, the abscopal effect, and other systemic effects observed with the application of low level laser (LLLT). The implications of the hypothesis are important in that they point to mechanisms that can account for the effectiveness of laser in the treatment and prevention of inflammatory diseases, chronic pain and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ann D Liebert
- Faculty of Health Sciences, University of Sydney, Australia
| | - Brian T Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | - Roger D Adams
- Faculty of Health Sciences, University of Sydney, Australia.
| |
Collapse
|
27
|
Biological Water Dynamics and Entropy: A Biophysical Origin of Cancer and Other Diseases. ENTROPY 2013. [DOI: 10.3390/e15093822] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT). Int J Mol Sci 2013; 14:13542-58. [PMID: 23807510 PMCID: PMC3742202 DOI: 10.3390/ijms140713542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022] Open
Abstract
Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | |
Collapse
|
29
|
Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 2011; 29:408-17. [PMID: 21851183 DOI: 10.1089/neu.2010.1745] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level laser light (800 nm) was applied directly to the contused parenchyma or transcranially in mice beginning 60-80 min after CCI. Injured mice treated with 60 J/cm² (500 mW/cm²×2 min) either transcranially or via an open craniotomy had modestly improved latency to the hidden platform (p<0.05 for group), and probe trial performance (p<0.01) compared to non-treated controls. The beneficial effects of LLLT in open craniotomy mice were associated with reduced microgliosis at 48 h (21.8±2.3 versus 39.2±4.2 IbA-1+ cells/200×field, p<0.05). Little or no effect of LLLT on post-injury cognitive function was observed using the other doses, a 4-h administration time point and 7-day administration of 60 J/cm². No effect of LLLT (60 J/cm² open craniotomy) was observed on post-injury motor function (days 1-7), brain edema (24 h), nitrosative stress (24 h), or lesion volume (14 days). Although further dose optimization and mechanism studies are needed, the data suggest that LLLT might be a therapeutic option to improve cognitive recovery and limit inflammation after TBI.
Collapse
Affiliation(s)
- Jugta Khuman
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pleffken PR, Borges AB, Gonçalves SEDEP, Rocha Gomes Torres C. The effectiveness of low-intensity red laser for activating a bleaching gel and its effect in temperature of the bleaching gel and the dental pulp. J ESTHET RESTOR DENT 2011; 24:126-32. [PMID: 22524720 DOI: 10.1111/j.1708-8240.2011.00444.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
STATEMENT OF THE PROBLEM The effectiveness of low-intensity red laser for activating a bleaching gel and its effect in pulp temperature was not investigated in dental literature. PURPOSE The objective of this study was to assess the effectiveness of low-intensity red laser for activating a bleaching gel, as well as its effect in temperature of the bleaching gel and the dental pulp. MATERIALS AND METHODS Forty extracted bovine teeth were immersed in a solution of coffee 14 days for darkening. The initial colors were recorded by spectrophotometric analysis. The specimens were randomly distributed into two groups (N = 20): the control, which did not receive light and the experimental group that received light from an appliance fitted with three red light-emitting laser diodes (λ = 660 nm). A green-colored, 35% H(2) O(2) -based bleaching gel was applied for 30 minutes, and changed three times. After bleaching, the colors were again measured to obtain the L*a*b* values. Color variation was calculated (ΔE) and the data submitted to the non-paired t-test (5%). To assess temperature, 10 human incisors were prepared, in which one thermocouple was placed on the bleaching gel applied on the surface of the teeth and another inside the pulp chamber. RESULTS There was a significant difference between the groups (p = 0.016), and the experimental group presented a significantly higher mean variation (7.21 ± 2.76) in comparison with the control group (5.37 ± 1.76). There was an increase in pulp temperature, but it was not sufficient to cause damage to the pulp. CONCLUSION Bleaching gel activation with low-intensity red laser was capable of increasing the effectiveness of bleaching treatment and did not increase pulp temperature to levels deleterious to the pulp.
Collapse
|
31
|
Wang C, Bókkon I, Dai J, Antal I. Spontaneous and visible light-induced ultraweak photon emission from rat eyes. Brain Res 2011; 1369:1-9. [DOI: 10.1016/j.brainres.2010.10.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 11/30/2022]
|
32
|
Mills PJ, Jain S. Biofield therapies and psychoneuroimmunology. Brain Behav Immun 2010; 24:1229-30. [PMID: 20656011 DOI: 10.1016/j.bbi.2010.07.246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022] Open
Affiliation(s)
- Paul J Mills
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0804, USA.
| | | |
Collapse
|