1
|
Zheng L, Li Z, Wang Z, Shen L, Liu J. The oxidative stress, mitochondrial pathway apoptosis, and the antagonistic effects of chrysophanol in SH-SY5Y cells via DTPP-induced photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103062. [PMID: 35963528 DOI: 10.1016/j.pdpdt.2022.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate the susceptibility of SH-SY5Y cells to DTPP-based photodynamic therapy (PDT) and the antagonistic effects of chrysophanol (Chr) on PDT. METHODS PDT photocytotoxicity to cells was quantified and determined by exposing increasing concentrations of DTPP between 2.5 to 20 μg/mL to radiation with energy densities of 1.2-9.6 J/cm2 at 630-nm wavelength. Sodium azide (SA, NaN3) and d-mannitol (DM) were employed to study the reaction type of PDT. The photodynamic stress after PDT was assessed by superoxide dismutase (SOD), malondialdehyde (MDA), and total antioxidative capacity (T-AOC) assays. The apoptosis pathway of SH-SY5Y cells after PDT was studied by the determination of JC-1 and caspase-9/Caspase-3 concentrations. MTT and double fluorescence staining assays were applied to study the effect of Chr on cell survival and apoptosis rate in PDT, respectively. PI was used to detect the effect of Chr on cell membrane integrity after DTPP-PDT treatment. RESULTS The dose-dependent killing effect of high DTPP concentrations and irradiation doses were identified. Cell apoptosis is mediated by a mitochondrial pathway with a total apoptosis rate of 33.8% at 10 μg/mL of DTPP after irradiation with 2.4 J/cm2. Oxidative stress was produced by ROS in PDT and non-reversible cell oxidative damage appeared due to the cells' modulation of the oxidative stress balance during the PDT response. Chr had a- effect on ROS capture and an inhibitory effect on the PDT-induced destruction of cell membranes. CONCLUSIONS SH-SY5Y cells were susceptible to DTPP-PDT, resulting in a mitochondrial apoptosis pathway. There is an antagonistic effect of Chr on PDT in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Liqing Zheng
- Department of Pharmacology, College of pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Ze Li
- Department of Pharmacology, College of pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Zhao Wang
- Department of Pharmacology, College of pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Lixia Shen
- Department of Pharmacology, College of pharmacy, Hebei North University, Zhangjiakou 075000, China; Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
2
|
Dobre M, Boscencu R, Neagoe IV, Surcel M, Milanesi E, Manda G. Insight into the Web of Stress Responses Triggered at Gene Expression Level by Porphyrin-PDT in HT29 Human Colon Carcinoma Cells. Pharmaceutics 2021; 13:pharmaceutics13071032. [PMID: 34371724 PMCID: PMC8309054 DOI: 10.3390/pharmaceutics13071032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 01/21/2023] Open
Abstract
Photodynamic therapy (PDT), a highly targeted therapy with acceptable side effects, has emerged as a promising therapeutic option in oncologic pathology. One of the issues that needs to be addressed is related to the complex network of cellular responses developed by tumor cells in response to PDT. In this context, this study aims to characterize in vitro the stressors and the corresponding cellular responses triggered by PDT in the human colon carcinoma HT29 cell line, using a new asymmetric porphyrin derivative (P2.2) as a photosensitizer. Besides investigating the ability of P2.2-PDT to reduce the number of viable tumor cells at various P2.2 concentrations and fluences of the activating light, we assessed, using qRT-PCR, the expression levels of 84 genes critically involved in the stress response of PDT-treated cells. Results showed a fluence-dependent decrease of viable tumor cells at 24 h post-PDT, with few cells that seem to escape from PDT. We highlighted following P2.2-PDT the concomitant activation of particular cellular responses to oxidative stress, hypoxia, DNA damage and unfolded protein responses and inflammation. A web of inter-connected stressors was induced by P2.2-PDT, which underlies cell death but also elicits protective mechanisms that may delay tumor cell death or even defend these cells against the deleterious effects of PDT.
Collapse
Affiliation(s)
- Maria Dobre
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mihaela Surcel
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Gina Manda
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| |
Collapse
|
3
|
Qi F, Sun Y, Lv M, Qin F, Cao W, Bi L. Effects of palmatine hydrochloride mediated photodynamic therapy on oral squamous cell carcinoma. Photochem Photobiol Sci 2019; 18:1596-1605. [PMID: 31099374 DOI: 10.1039/c9pp00040b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor, accounting for about 7% of all malignant tumors. Palmatine hydrochloride (PaH) is the alkaloid constituent of Fibraurea tinctoria Lour. The present study aims to investigate the antitumor effect of photodynamic therapy (PDT) with PaH (PaH-PDT) on human OSCC cell lines both in vitro and in vivo. The results indicate that PaH-PDT exhibited a potent phototoxic effect in cell proliferation and produced cell apoptosis. PaH-PDT increased the percentage of cells in the G0/G1 phase and decreased the CDK2 and Cyclin E1 protein level. In addition, PaH-PDT markedly increased the generation of intracellular ROS, which can be suppressed using the ROS scavenger N-acetylcysteine (NAC). Furthermore, PaH-PDT increased the expression of p53 protein in vitro and in vivo. In vivo experiments revealed that the PaH-PDT resulted in an effective inhibition of tumor growth and prolonged the survival time of tumor-bearing mice. Moreover, no obvious signs of side effects or a drop in body weight was observed. These results suggested that PaH was a promising sensitizer that can be combined with light to produce significant anti-tumor effects in oral squamous cell carcinoma via enhanced ROS production and up-regulated expression of p53.
Collapse
Affiliation(s)
- Feng Qi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| | | | | | | | | | | |
Collapse
|
4
|
Photodynamic therapy with talaporfin sodium induces dose- and time-dependent apoptotic cell death in malignant meningioma HKBMM cells. Photodiagnosis Photodyn Ther 2018; 25:29-34. [PMID: 30389626 DOI: 10.1016/j.pdpdt.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the effect of photodynamic therapy (PDT) with the talaporfin sodium (mono-L-asparthyl chlorine e6: NPe-6) on human malignant meningioma cell line HKBMM cells in vitro. MATERIAL AND METHODS After incubation with NPe6 for 4 h, cells underwent PDT (diode laser irradiation: 3.4 mW/cm2 and 1 J/cm2. Cell viability was determined in 2 malignant meningioma cell lines (human origin; HKBMM cells and rat origin; KMY-J cells) and human malignant glioma U251 cells with Cell Counting Kit-8 assay. The HKBMM cells were examined for caspase-3 activity, annexin V or propidium iodide (PI) staining, and lactate dehydrogenase leakage. Morphological change was also investigated with phase-contrast microscopy. RESULTS In human malignant meningioma HKBMM cells, viability showed a dose- and time-dependent decrease. After 24 h of laser irradiation, NPe6 at 20 μg/ml or more induced a significant decrease in cell viability in both HKBMM cells and KMY-J cells, although they more resistance than the malignant glioma cell line U251 cells. Two kinds of morphological change were also observed in the HKBMM cells, shrinkage of the cell body, indicating apoptosis, and swelling of the cell body, indicating necrosis. In addition, both caspase-3 activity and DNA fragmentation, biochemical markers indicative of apoptosis, showed a dose-dependent increase. The percentage of necrotic cells showing positive staining for annexin V or PI was greater than that of apoptotic cells at a high concentration of NPe6. Lactate dehydrogenase leakage, a biochemical marker of necrosis, also showed a marked increase at a high concentration of NPe6. CONCLUSION Photodynamic therapy with NPe6 induced dose- and time-dependent apoptosis in human malignant meningioma HKBMM cells. At a high concentration of NPe6, however, it induced necrosis.
Collapse
|
5
|
Zhang K, Zhao T, Huang X, He Y, Zhou Y, Wu L, Wu K, Fan M, Zhu L. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements. Cell Biol Int 2016; 40:354-60. [PMID: 26648388 DOI: 10.1002/cbin.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Brain Research Center, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yunlin He
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Liying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Kuiwu Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
6
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. Lasers Med Sci 2014; 30:181-91. [PMID: 25118661 DOI: 10.1007/s10103-014-1637-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/16/2014] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) involves the administration and activation of photosensitizing reagents in cancer tissues to induce cytotoxicity. Here we examined the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP) -mediated PDT on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. LA795 murine lung adenocarcinoma cell line was used in the study, with cellular uptake of DTPP being quantified by a UV-visible spectrophotometer. The subcellular localization of DTPP was detected by confocal laser scanning microscopy, alteration of cell morphology after PDT was observed by an inverted light microscope, and late-stage apoptosis was examined by terminal dUTP nick end labeling (TUNEL) . The effects of influencing factors on cytotoxicity of PDT in LA795 cells was investigated with varying concentrations of DTPP, energy densities, power densities, and antioxidants by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Effects of PDT on cell cycle and plasma membrane integrity were studied by flow cytometry analysis. The uptake of DTPP by LA795 cells reached maximum after incubation for 24 h. Confocal laser scanning microscopy showed that DTPP was mainly in the mitochondrion, and slight localization was detected in the lysosomes. Cellular inhibitory effects increased with increased irradiation dose and DTPP concentration, while unactivated DTPP had low toxicity. Flow cytometry analysis revealed that DTPP-PDT-treated cells showed S phase arrest. Cell membrane damage initiation, repair, and irreversible damage were observed at 2, 4, and 5 h after DTPP-PDT , respectively. Together, our results demonstrated cell apoptosis, compromised viability, and cell cycle S phase arrest of LA795 in response to DTPP-PDT , while no effect on the lung cancer cells was observed with irradiation or photosensitizer treatment alone.
Collapse
|
8
|
Blake E, Allen J, Curnow A. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Photodiagnosis Photodyn Ther 2013; 10:575-82. [PMID: 24284114 DOI: 10.1016/j.pdpdt.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/13/2013] [Accepted: 06/16/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Photodynamic therapy requires the combined interaction of a photosensitiser, light and oxygen to ablate target tissue. In this study we examined the effect of iron chelation and oxygen environment manipulation on the accumulation of the clinically useful photosensitiser protoporphyrin IX (PpIX) within human squamous epithelial carcinoma cells and the subsequent ablation of these cells on irradiation. METHODS Cells were incubated at concentrations of 5%, 20% or 40% oxygen for 24h prior to and for 3h following the administration of the PpIX precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) or hexylaminolevulinate (HAL) with or without the iron chelator 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94). PpIX accumulation was monitored using a fluorescence plate reader, cells were irradiated with 37 J/cm(2) red light and cell viability measured using the neutral red uptake assay. RESULTS Manipulation of the oxygen environment and/or co-administration of CP94 with PpIX precursors resulted in significant changes in both PpIX accumulation and photobleaching. Incubation with 5% or 40% oxygen produced the greatest levels of PpIX and photobleaching in cells incubated with ALA/MAL. Incorporation of CP94 also resulted in significant decreases in cell viability following administration of ALA/MAL/HAL, with oxygen concentration predominantly having a significant effect in cells incubated with HAL. CONCLUSIONS Experimentation with human squamous epithelial carcinoma cells has indicated that the iron chelator CP94 significantly increased PpIX accumulation induced by each PpIX congener investigated (ALA/MAL/HAL) at all oxygen concentrations employed (5%/20%/40%) resulting in increased levels of photobleaching and reduced cell viability on irradiation. Further detailed investigation of the complex relationship of PDT cytotoxicity at various oxygen concentrations is required. It is therefore concluded that iron chelation with CP94 is a simple protocol modification with which it may be much easier to enhance clinical PDT efficacy than the complex and less well understood process of oxygen manipulation.
Collapse
Affiliation(s)
- Emma Blake
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| | | | | |
Collapse
|
9
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT). Int J Mol Sci 2013; 14:13542-58. [PMID: 23807510 PMCID: PMC3742202 DOI: 10.3390/ijms140713542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/13/2022] Open
Abstract
Applications of laser therapy, including low-level laser therapy (LLLT), phototherapy and photodynamic therapy (PDT), have been proven to be beneficial and relatively less invasive therapeutic modalities for numerous diseases and disease conditions. Using specific types of laser irradiation, specific cellular activities can be induced. Because multiple cellular signaling cascades are simultaneously activated in cells exposed to lasers, understanding the molecular responses within cells will aid in the development of laser therapies. In order to understand in detail the molecular mechanisms of LLLT and PDT-related responses, it will be useful to characterize the specific expression of miRNAs and proteins. Such analyses will provide an important source for new applications of laser therapy, as well as for the development of individualized treatments. Although several miRNAs should be up- or down-regulated upon stimulation by LLLT, phototherapy and PDT, very few published studies address the effect of laser therapy on miRNA expression. In this review, we focus on LLLT, phototherapy and PDT as representative laser therapies and discuss the effects of these therapies on miRNA expression.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | |
Collapse
|
10
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Blue Laser Irradiation Generates Intracellular Reactive Oxygen Species in Various Types of Cells. Photomed Laser Surg 2013; 31:95-104. [DOI: 10.1089/pho.2012.3361] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Takeshi Hirasawa
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Shinpei Okawa
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama, Japan
| |
Collapse
|
11
|
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Responses of Cancer Cells Induced by Photodynamic Therapy. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:87-108. [DOI: 10.1260/2040-2295.4.1.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Nonaka Y, Nanashima A, Nonaka T, Uehara M, Isomoto H, Abo T, Nagayasu T. Synergic effect of photodynamic therapy using talaporfin sodium with conventional anticancer chemotherapy for the treatment of bile duct carcinoma. J Surg Res 2012; 181:234-41. [PMID: 22835954 DOI: 10.1016/j.jss.2012.06.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/28/2012] [Accepted: 06/20/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an effective laser treatment for locally treating advanced bile duct carcinoma (BDC). The study objective was to evaluate the synergic effect of PDT using a new photosensitizer, talaporfin sodium (Laserphyrin), in combination with conventional anticancer drug treatments. METHODS The range of the necrotic area, the percentage of apoptosis-positive cells, the vascular endothelial growth factor expression quantification, and the proliferating cell nuclear antigen-labeling index, as treatment effects, were examined in the BDC cell line (NOZ) in vitro and in vivo (4-wk-old male BALB/c mice). RESULTS Tumor viability was determined by an in vitro MTS assay. PDT with a single treatment of 5-fluorouracil, gemcitabine, oxaliplatin, and cis-diamminedichloroplatinum showed a significantly lower viability compared with the control or the PDT-alone group (P<0.05). Furthermore, administering PDT combined with two anticancer drugs showed a further decline in the tumor viability. A treatment of PDT combined with oxaliplatin and gemcitabine showed the least viability (P<0.05). Thus, this regimen was administered in the in vivo study. The tumor necrotic area, apoptosis positivity, and the vascular endothelial growth factor expression rate were higher in the PDT with anticancer drugs group compared with those of the other groups (P<0.05). The proliferating cell nuclear antigen-labeling index results in the PDT with the anticancer drugs group were significantly lower than those of the other groups (P<0.05). CONCLUSIONS A treatment of PDT combined with gemcitabine and oxaliplatin showed the best synergic effect for necrosis, apoptosis, and cytostatic alterations for the treatment of BDC.
Collapse
Affiliation(s)
- Yoshikazu Nonaka
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ahn MY, Yoon HE, Kwon SM, Lee J, Min SK, Kim YC, Ahn SG, Yoon JH. Synthesized Pheophorbide a-mediated photodynamic therapy induced apoptosis and autophagy in human oral squamous carcinoma cells. J Oral Pathol Med 2012; 42:17-25. [PMID: 22742535 DOI: 10.1111/j.1600-0714.2012.01187.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pheophorbide a (Pa) is a chlorine-based photosensitizer derived from an ethnopharmacological herb, and our group recently synthesized Pa by the removal of a magnesium ion and a phytyl group from chlorophyll-a. In this study, the effect of photodynamic therapy (PDT) with synthesized Pa was examined in a human oral squamous cell carcinoma (OSCC) cells. METHODS Cells were treated with PDT with Pa, and reactive oxygen species (ROS) and mitochondrial membrane potential [ΔΨ (m)] were examined. Apoptosis was measured using annexin V staining and immunoblot. Autophagy was characterized by the increase in LC3B-II and the formation of autophagosome and acidic vesicular organelles (AVOs). RESULTS Pa-PDT inhibited the proliferation of OSCC cells in a dose-dependent manner. Pa-PDT increased the number of apoptotic cells by inactivating ERK pathway. Pa-PDT also induced autophagy in OSCC cells evidenced by the increased levels of LC3 type II expression and the accumulation of AVOs. The inhibition of autophagy enhanced Pa-PDT-mediated cytotoxicity through an increase in necrosis. CONCLUSIONS These results suggest that synthesized Pa-PDT exerts anti-tumor effects by inducing apoptosis and autophagy and provide novel evidence that Pa-PDT induces autophagy, and autophagy inhibition enhances Pa-PDT-mediated necrosis in OSCC cells.
Collapse
Affiliation(s)
- Mee Young Ahn
- Department of Pathology, Research Center for Oral disease Regulation of Aged, School of Dentistry, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Biophysical parameters influencing secondary oxidants activation in human serum exposed to singlet oxygen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:224-31. [DOI: 10.1016/j.jphotobiol.2010.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022]
|