1
|
Covatti C, Mizobuti DS, da Rocha GL, da Silva HNM, Minatel E. Photobiomodulation Therapy Effects at Different Stages of the Dystrophic Phenotype: A Histomorphometric Study. J Manipulative Physiol Ther 2024:S0161-4754(24)00064-2. [PMID: 39453299 DOI: 10.1016/j.jmpt.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on the gastrocnemius muscle of X-linked muscular dystrophy (mdx) mice. METHODS The study used an experimental model of Duchenne muscular dystrophy, at 3 stages of degeneration/regeneration of muscle fibers: an acute stage (14-28 days old), acute and stabilized stages (14-42 days old), and a stabilized stage (28-42 days old). Photobiomodulation therapy (also known as low-level light therapy) at 0.6 J was applied 3 times per week to the dystrophic gastrocnemius muscle of mdx mice at ages 14 to 28, 14 to 42, and 28 to 42 days. After the treatment period, the gastrocnemius muscle was collected, and cryosections were prepared for histopathologic analysis. RESULTS In all 3 stages evaluated, a significant reduction was observed in immunoglobulin G uptake by muscle fibers, the inflammatory area, macrophage infiltration, the reactive dihydroethidium area, and the number of autofluorescent lipofuscin granules in the gastrocnemius muscle of mdx mice after PBMT. CONCLUSION The results demonstrated that low-level light therapy, when applied during or after the acute phase of the degeneration/regeneration muscle process, improves the pathological histomorphologic features in dystrophic muscle. Based on these results, PBMT appears to be a promising therapy for dystrophinopathies, warranting further research in humans to verify its efficacy.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Covatti C, Mizobuti DS, Rocha GLD, da Silva HNM, de Lourenço CC, Pertille A, Pereira ECL, Minatel E. Low-Level Photobiomodulation Therapy Modulates H 2O 2 Production, TRPC-6, and PGC-1α Levels in the Dystrophic Muscle. Photobiomodul Photomed Laser Surg 2023; 41:389-401. [PMID: 37527194 DOI: 10.1089/photob.2022.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, São Paulo, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Universidade de Brasília (UnB), Faculdade de Ceilândia, Brasília, Distrito Federal, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Effects of moderate aerobic exercise, low-level laser therapy, or their combination on muscles pathology, oxidative stress and irisin levels in the mdx mouse model of Duchenne muscular dystrophy. Lasers Med Sci 2022; 37:2925-2936. [PMID: 35441320 DOI: 10.1007/s10103-022-03562-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate how the combined use of low-level laser therapy (LLLT) and exercise, to reduce the possible side effects and/or increase the benefits of exercise, would affect oxidative stress, utrophin, irisin peptide, and skeletal, diaphragmatic, and cardiac muscle pathologies. In our study, 20 mdx mice were divided into four groups. Groups; sedentary and placebo LLLT (SC), sedentary and LLLT (SL), 30-min swimming exercise (Ex), and 30-min swimming exercise and LLLT (ExL). After 8 weeks of swimming exercise, muscle tests, biochemically; oxidative stress index (OSI), utrophin and irisin levels were measured. Skeletal, diaphragmatic and cardiac muscle histopathological scores, skeletal and cardiac muscle myocyte diameters were determined under the light and electron microscope. While only irisin levels were increased in group SL compared to SC, it was determined that OSI, heart muscle histopathological scores decreased and irisin levels increased in both exercise groups (p < 0.05). In addition, in the ExL group, an increase in rotarod and utrophin levels, and a decrease in muscle and diaphragm muscle histopathological scores were observed (p < 0.05). It was determined that the application of swimming exercise in the mdx mouse model increased the irisin level in the skeletal muscle, while reducing the OSI, degeneration in the heart muscle, inflammation and cardiopathy. When LLLT was applied in addition to exercise, muscle strength, skeletal muscle utrophin levels increased, and skeletal and diaphragmatic muscle degeneration and inflammation decreased. In addition, it was determined that only LLLT application increased the level of skeletal muscle irisin.
Collapse
|
4
|
Macedo AB, Mizobuti DS, Hermes TDA, Mâncio RD, Pertille A, Kido LA, Cagnon VHA, Minatel E. Photobiomodulation Therapy for Attenuating the Dystrophic Phenotype of Mdx Mice. Photochem Photobiol 2019; 96:200-207. [PMID: 31733143 DOI: 10.1111/php.13179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
This study analyzed photobiomodulation therapy (PBMT) effects on regenerative, antioxidative, anti-inflammatory and angiogenic markers in the dystrophic skeletal muscle of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD), during the acute phase of dystrophy disease. The following groups were set up: Ctrl (control group of normal wild-type mice; C57BL/10); mdx (untreated mdx mice); mdxPred (mdx mice treated with prednisolone) and mdxLA (mdx mice treated with PBMT). The PBMT was carried out using an Aluminum Gallium Arsenide (AIGaAs; IBRAMED® laserpulse) diode, 830 nm wavelength, applied on the dystrophic quadriceps muscle. The mdxLA group showed a degenerative and regenerative area reduction simultaneously with a MyoD level increase, ROS production and inflammatory marker reduction and up-regulation in the VEGF factor. In addition, PBMT presented similar effects to prednisolone treatment in most of the parameters analyzed. In conclusion, our results indicate that PBMT in the parameters selected attenuated the dystrophic phenotype of mdx mice, improving skeletal muscle regeneration; reducing the oxidative stress and inflammatory process; and up-regulating the angiogenic marker.
Collapse
Affiliation(s)
- Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tulio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, SP, Brazil
| | - Larissa Akemi Kido
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valéria Helena Alves Cagnon
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
5
|
Ma JX, Yang QM, Xia YC, Zhang WG, Nie FF. Effect of 810 nm Near-Infrared Laser on Revascularization of Ischemic Flaps in Rats. Photomed Laser Surg 2019; 36:290-297. [PMID: 29882737 DOI: 10.1089/pho.2017.4360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the effect of 810 nm near-infrared (NIR) laser on the revascularization of ischemic flaps. BACKGROUND It has long been proved that photobiomodulation therapy (PBMT) improves the blood supply of flaps. NIR laser improves the treatment of hypodermis-located lesions and of flap survival, but basic research on the use of 810 nm NIR laser for ischemic flap revascularization is still lacking. MATERIALS AND METHODS We prepared two symmetrical long random-pattern flaps on the backs of 60 rats. Each flap was 6 cm long, 1 cm wide, and 1 cm to the middle line. The flaps were divided into an irradiated flap group and an internal control group. The irradiated flaps underwent postoperative 810 nm laser therapy with the energy density of 11.30 J/cm2 daily. The control flaps were covered by stainless steel to avoid laser irradiation. We observed the viability of the flaps. The flaps underwent Hematoxylin and Eosin (H&E) staining for the observation of histomorphology, immunohistochemical staining of factor VIII for the capillary count, α-smooth muscle actin for the small arterial count, and vascular endothelial growth factor for the integrated optical density (OD) of the positive stained color. RESULTS The irradiated flaps showed significantly better flap survival than the control flaps. H&E staining showed that the irradiated flaps had clear tissue structure and little inflammatory cell infiltration. The control flaps demonstrated comparatively worse results. Vascular endothelial growth factor staining showed that the difference in integrated OD between the irradiated flaps and the control flaps was not statistically significant. α-smooth muscle actin and factor VIII staining showed significantly greater numbers of arterioles and capillaries in the irradiated flaps than the control flaps after 4 days of irradiation. CONCLUSIONS PBMT with 810 nm NIR laser could enhance ischemic flap revascularization and increase flap viability.
Collapse
Affiliation(s)
- Jian-Xun Ma
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| | - Qing-Mo Yang
- 2 Department of Breast Surgery, First Affiliated Hospital of Xiamen University , Xiamen, China
| | - You-Chen Xia
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| | - Wei-Guang Zhang
- 3 Department of Anatomy, Basic Medical Science, Peking University Health Science Center , Beijing, China
| | - Fang-Fei Nie
- 1 Department of Plastic Surgery, Peking University Third Hospital , Beijing, China
| |
Collapse
|
6
|
Macedo AB, Moraes LHR, Mizobuti DS, Fogaça AR, Moraes FDSR, Hermes TDA, Pertille A, Minatel E. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress. PLoS One 2015; 10:e0128567. [PMID: 26083527 PMCID: PMC4470633 DOI: 10.1371/journal.pone.0128567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.
Collapse
Affiliation(s)
- Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luis Henrique Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline Reis Fogaça
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda dos Santos Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tulio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, SP, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|