1
|
Fellin CR, Steiner RC, Buchen JT, Anders JJ, Jariwala SH. Photobiomodulation and Vascularization in Conduit-Based Peripheral Nerve Repair: A Narrative Review. Photobiomodul Photomed Laser Surg 2024; 42:1-10. [PMID: 38109199 DOI: 10.1089/photob.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Background: Peripheral nerve injuries pose a significant clinical issue for patients, especially in the most severe cases wherein complete transection (neurotmesis) results in total loss of sensory/motor function. Nerve guidance conduits (NGCs) are a common treatment option that protects and guides regenerating axons during recovery. However, treatment outcomes remain limited and often fail to achieve full reinnervation, especially in critically sized defects (>3 cm) where a lack of vascularization leads to neural necrosis. Conclusions: A multitreatment approach is, therefore, necessary to improve the efficacy of NGCs. Stimulating angiogenesis within NGCs can help alleviate oxygen deficiency through rapid inosculation with the host vasculature, whereas photobiomodulation therapy (PBMT) has demonstrated beneficial therapeutic effects on regenerating nerve cells and neovascularization. In this review, we discuss the current trends of NGCs, vascularization, and PBMT as treatments for peripheral nerve neurotmesis and highlight the need for a combinatorial approach to improve functional and clinical outcomes.
Collapse
Affiliation(s)
- Christopher R Fellin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Richard C Steiner
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med Sci 2023; 38:136. [PMID: 37310556 DOI: 10.1007/s10103-023-03801-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Since the reporting of Endre Mester's results, researchers have investigated the biological effects induced by non-ionizing radiation emitted from low-power lasers. Recently, owing to the use of light-emitting diodes (LEDs), the term photobiomodulation (PBM) has been used. However, the molecular, cellular, and systemic effects involved in PBM are still under investigation, and a better understanding of these effects could improve clinical safety and efficacy. Our aim was to review the molecular, cellular, and systemic effects involved in PBM to elucidate the levels of biological complexity. PBM occurs as a consequence of photon-photoacceptor interactions, which lead to the production of trigger molecules capable of inducing signaling, effector molecules, and transcription factors, which feature it at the molecular level. These molecules and factors are responsible for cellular effects, such as cell proliferation, migration, differentiation, and apoptosis, which feature PBM at the cellular level. Finally, molecular and cellular effects are responsible for systemic effects, such as modulation of the inflammatory process, promotion of tissue repair and wound healing, reduction of edema and pain, and improvement of muscle performance, which features PBM at the systemic level.
Collapse
Affiliation(s)
- Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
3
|
Yaralı Çevik ZB, Karaman O, Topaloğlu N. Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation. BIOMATERIALS ADVANCES 2023; 149:213392. [PMID: 36965403 DOI: 10.1016/j.bioadv.2023.213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Bone tissue engineering aims to diversify and enhance the strategies for bone regeneration to overcome bone-related health problems. Bone mimetic peptides such as Gly-Arg-Gly-Asp-Ser (RGD) are useful tools for osteogenic differentiation. Similarly, photobiomodulation (PBM) at 600-800 nm of wavelength range improves bone tissue healing via the production of intracellular reactive oxygen species (ROS), ATP synthesis, and nitric oxide (NO) release. Besides, traditional monolayer cell culture models have limited conditions to exhibit the details of a mechanism such as a peptide or PBM therapy. However, scaffold-free microtissues (SFMs) can mimic a tissue more properly and be an efficient way to understand the mechanism of therapy via cell-cell interaction. Thus, the synergistic effects of RGD peptide (1 mM) and PBM applications (1 J/cm2 energy density at 655 nm of wavelength and 5 J/cm2 energy density at 808 nm of wavelength) were evaluated on SFMs formed with the co-culture of Human Bone Marrow Stem Cells (hBMSC) and Human Umbilical Vein Endothelial Cells (HUVEC) for osteogenic differentiation. Cell viability assays, mechanistic analysis, and the evaluation of osteogenic differentiation markers were performed. Combined therapies of RGD and PBM were more successful to induce osteogenic differentiation than single therapies. Especially, RGD + PBM at 655 nm group exhibited a higher capability of osteogenic differentiation via ROS production, ATP synthesis, and NO release. It can be concluded that the concomitant use of RGD and PBM may enhance bone regeneration and become a promising therapeutic tool to heal bone-related problems in clinics.
Collapse
Affiliation(s)
- Ziyşan Buse Yaralı Çevik
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Ozan Karaman
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Nermin Topaloğlu
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| |
Collapse
|
4
|
Jana Neto FC, Martimbianco ALC, Mesquita-Ferrari RA, Bussadori SK, Alves GP, Almeida PVD, Delgado FG, Fonseca LR, Gama MZG, Jorge MD, Hamblin MR, Fernandes KPS. Effects of multiwavelength photobiomodulation for the treatment of traumatic soft tissue injuries associated with bone fractures: A double-blind, randomized controlled clinical trial. JOURNAL OF BIOPHOTONICS 2023; 16:e202200299. [PMID: 36640122 DOI: 10.1002/jbio.202200299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/01/2022] [Accepted: 12/25/2022] [Indexed: 05/17/2023]
Abstract
This study evaluated the efficacy and safety of multiwavelength photobiomodulation (MPBM) in healing soft tissue injuries associated with tibial and/or ankle fractures. Participants were randomized into the MPBM or control group. Primary outcome was wound healing, measured by the Bates-Jensen scale. Assessments were performed daily. Twenty-seven hospitalized adults were included. MPBM showed an improvement in the daily mean Bates-Jensen scale (MPBM 32.1 vs. control 34.2; p = 0.029), daily mean pain score change (MPBM 0.5 vs. control 0.2; p = 0.04) and occurrence of infection at the site of the external fixator pins (MPBM 15.3% vs. control 57.1%; p = 0.02). MPBM group also showed faster-wound resolution (MPBM 13.1 vs. control 23.1 days). Subgroup analysis showed improvement in the MPBM group among less severe patients on the Bates-Jensen scale (MPBM 27.4 vs. control 34.7; p = 0.0081) and mean time for wound resolution (MPBM 7.0 vs. control 14.6 days; p = 0.03). MPBM appears safe and effective in reducing wound resolution time, infection in the surgical pin sites, reported pain and time before definitive surgery.
Collapse
Affiliation(s)
- Frederico Carlos Jana Neto
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE) Rua Vergueiro, São Paulo, Brazil
- Orthopedics and Traumatology Group, Conjunto Hospitalar do Mandaqui. R. Voluntários da Pátria, São Paulo, Brazil
- Medicine School Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ana Luiza Cabrera Martimbianco
- Postgraduate Program in Health and Environment, Universidade Metropolitana de Santos (UNIMES), Santos, Brazil
- Health Technology Assessment Center, Hospital Sírio-Libanês (NATS-HSL), São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE) Rua Vergueiro, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE) Rua Vergueiro, São Paulo, Brazil
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Gustavo Porto Alves
- Orthopedics and Traumatology Group, Conjunto Hospitalar do Mandaqui. R. Voluntários da Pátria, São Paulo, Brazil
| | - Paulo Victor Dias Almeida
- Orthopedics and Traumatology Group, Conjunto Hospitalar do Mandaqui. R. Voluntários da Pátria, São Paulo, Brazil
| | - Felipe Guimaraes Delgado
- Orthopedics and Traumatology Group, Conjunto Hospitalar do Mandaqui. R. Voluntários da Pátria, São Paulo, Brazil
| | - Lucas Resende Fonseca
- Orthopedics and Traumatology Group, Conjunto Hospitalar do Mandaqui. R. Voluntários da Pátria, São Paulo, Brazil
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE) Rua Vergueiro, São Paulo, Brazil
| |
Collapse
|
5
|
Prado TP, Zanchetta FC, Barbieri B, Aparecido C, Melo Lima MH, Araujo EP. Photobiomodulation with Blue Light on Wound Healing: A Scoping Review. Life (Basel) 2023; 13:575. [PMID: 36836932 PMCID: PMC9959862 DOI: 10.3390/life13020575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Photobiomodulation consists of inducing healing by irradiating light. This scoping review investigates the effect of blue light on the healing process. METHODS The MEDLINE, Web of Science, Scopus, and CINAHL databases were searched. Two reviewers independently examined the search results and extracted data from the included studies. A descriptive analysis was performed. RESULTS Twenty-two articles were included. Studies were categorized as in vitro/mixed, preclinical, and clinical. The power density used was 10-680 mW/cm2 in most of the in vitro/preclinical studies, the irradiation time ranged from 5 s to 10 min, and different wavelengths and energy densities were used. In clinical studies, the wavelength ranged from 405 to 470 nm, and the energy density varied from 1.5 to 30 J/cm2. CONCLUSIONS A low energy density (<20 J/cm2) was able to stimulate the different cell types and proteins involved in healing, while a high energy density, 20.6-50 J/cm2, significantly reduced cell proliferation, migration, and metabolism. There is a great variety of device parameters among studies, and this makes it difficult to conclude what the best technical specifications are. Thus, further studies should be performed in order to define the appropriate parameters of light to be used.
Collapse
Affiliation(s)
- Thais P. Prado
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Flávia Cristina Zanchetta
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Beatriz Barbieri
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Caroline Aparecido
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Eliana P. Araujo
- School of Nursing, University of Campinas (Unicamp), Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| |
Collapse
|
6
|
Carroll JD. Photobiomodulation Literature Watch December 2021. Photobiomodul Photomed Laser Surg 2022. [DOI: 10.1089/photob.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|