1
|
Yılmaz S, Kılıç N, Kaya Ş, Taşcı G. A Potential Biomarker for Predicting Schizophrenia: Metallothionein-1. Biomedicines 2023; 11:590. [PMID: 36831126 PMCID: PMC9952915 DOI: 10.3390/biomedicines11020590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
It has been thought that oxidative damage may occur in the pathophysiology of schizophrenia; metallothioneins (MT) have strong antioxidant functions. In this study, we aimed to measure MT-1 levels in schizophrenia patients. A total of 52 patients diagnosed with schizophrenia and 38 healthy controls were included in the study. Serum MT-1 concentrations were measured using the Human Metallothionein-1 ELISA Kit. In addition, Cu and Zn levels were measured. PANSS (Positive and Negative Syndrome Scale) was used to determine the disease severity of patients with schizophrenia. The MT-1 levels of the schizophrenia group were lower than the MT-1 levels of the control group. When the correlation analyses were examined, a positive correlation was found between MT-1 and illness duration and Cu/Zn. A negative correlation was found between MT-1 levels and PANSS total scores and PANSS positive scores. In the regression analysis, it was seen that the decrease in MT-1 levels poses a risk for schizophrenia. It was observed that a decrease of 1 ng/mL in MT-1 levels increased the risk of schizophrenia 1.115 times. The low concentration of MT-1 is likely to cause a deficiency in antioxidant defense in patients with schizophrenia. MT-1 may be a useful biomarker for predicting schizophrenia.
Collapse
Affiliation(s)
- Seda Yılmaz
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| | - Nülüfer Kılıç
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| | - Şüheda Kaya
- Department of Psychiatry, Elazig Mental Health and Diseases Hospital, 23100 Elazığ, Turkey
| | - Gülay Taşcı
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23100 Elazığ, Turkey
| |
Collapse
|
2
|
Lazarus M, Sekovanić A, Reljić S, Kusak J, Ferenčaković M, Sindičić M, Gomerčić T, Huber Đ. Lead and Other Trace Element Levels in Brains of Croatian Large Terrestrial Carnivores: Influence of Biological and Ecological Factors. TOXICS 2022; 11:4. [PMID: 36668730 PMCID: PMC9865836 DOI: 10.3390/toxics11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Trace element pollution can adversely affect the brains of individuals and thus impact the entire population of apex predators, such as large European carnivores. We assessed exposure to prominent neurotoxicants As, Cd, Hg and Pb by measuring their brain stem levels in brown bears (n = 114), grey wolves (n = 8), Eurasian lynx (n = 3), and golden jackals (n = 2) sampled in 2015-2022 in Croatia. The highest of the non-essential elements was the Pb level in the bears' brains (median, Q1-Q3; 11.1, 7.13-24.1 μg/kg wet mass), with 4% of animals, all subadults, exceeding the established normal bovine levels (100 μg/kg wet mass). Species-specific differences were noted for Ca, Cd, Cu, Fe, Pb and Se brain levels. Female brown bears had higher As brain levels than males. Cubs and yearlings had lower brain Cd, but higher Zn, while subadults had higher Cu than adult bears. Hepatic As, Cd, Cu and Hg levels were shown to be a moderate proxy for estimating brain levels in bears (rS = 0.30-0.69). Multiple associations of As, Cd, Hg and Pb with essential elements pointed to a possible interaction and disturbance of brain Ca, Cu, Fe, Se and Zn homeostasis. Non-essential element levels in the brains of four studied species were lower than reported earlier for terrestrial meso-carnivores and humans. The age and sex of animals were highlighted as essential factors in interpreting brain element levels in ecotoxicological studies of large carnivores.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Nature Conservation, Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
3
|
Kadota Y, Yano A, Kawakami T, Sato M, Suzuki S. Metabolomic profiling of plasma from middle-aged and advanced-age male mice reveals the metabolic abnormalities of carnitine biosynthesis in metallothionein gene knockout mice. Aging (Albany NY) 2021; 13:24963-24988. [PMID: 34851303 PMCID: PMC8714139 DOI: 10.18632/aging.203731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Metallothionein (MT) is a family of low molecular weight, cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. MT1 and MT2 gene knockout (MTKO) mice show shorter lifespans than wild-type (WT) mice. In this study, we aimed to investigate how MT gene deficiency accelerates aging. We performed comparative metabolomic analyses of plasma between MTKO and WT male mice at middle age (50-week-old) and advanced age (100-week-old) using liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS). The concentration of N6,N6,N6-trimethyl-L-lysine (TML), which is a metabolic intermediate in carnitine biosynthesis, was consistently higher in the plasma of MTKO mice compared to that of WT mice at middle and advanced age. Quantitative reverse transcription PCR (RT-PCR) analysis revealed remarkably lower mRNA levels of Tmlhe, which encodes TML dioxygenase, in the liver and kidney of male MTKO mice compared to that of WT mice. L-carnitine is essential for β-oxidation of long-chain fatty acids in mitochondria, the activity of which is closely related to aging. Our results suggest that reduced carnitine biosynthesis capacity in MTKO mice compared to WT mice led to metabolic disorders of fatty acids in mitochondria in MTKO mice, which may have caused shortened lifespans.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Asuka Yano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
4
|
Ge T, Yu Y, Cui J, Cai L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am J Physiol Heart Circ Physiol 2019; 317:H264-H275. [PMID: 31100011 DOI: 10.1152/ajpheart.00123.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia, resulting in low-grade systemic inflammation. Diabetic cardiomyopathy (DCM) is a common complication among diabetic patients, and the mechanism underlying its induction of cardiac remodeling and dysfunction remains unclear. Numerous experimental and clinical studies have suggested that adaptive immunity, especially T lymphocyte-mediated immunity, plays a potentially important role in the pathogenesis of diabetes and DCM. Metallothioneins (MTs), cysteine-rich, metal-binding proteins, have antioxidant properties. Some potential mechanisms underlying the cardioprotective effects of MTs include the role of MTs in calcium regulation, zinc homeostasis, insulin sensitization, and antioxidant activity. Moreover, metal homeostasis, especially MT-regulated zinc homeostasis, is essential for immune function. This review discusses aberrant immune regulation in diabetic heart disease with respect to endothelial insulin resistance and the effects of hyperglycemia and hyperlipidemia on tissues and the different effects of intracellular and extracellular MTs on adaptive immunity. This review shows that intracellular MTs are involved in naïve T-cell activation and reduce regulatory T-cell (Treg) polarization, whereas extracellular MTs promote proliferation and survival in naïve T cells and Treg polarization but inhibit their activation, thus revealing potential therapeutic strategies targeting the regulation of immune cell function by MTs.
Collapse
Affiliation(s)
- Tingwen Ge
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky
| | - Youxi Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University , Changchun, Jilin , China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Norton Health Care, Louisville, Kentucky.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
5
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121636 DOI: 10.1007/978-3-319-99375-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that includes gradual and spontaneous biochemical and physiological changes which contributes to a decline in performance and increased susceptibility to diseases. Zn and Se are essential trace elements that play a pivotal role in immune functions and antioxidant defense and, consequently, are claimed to play also a role in successful aging trajectories. Consistently with their nature of essential trace elements, a plethora of data obtained “in vitro” and “in vivo” (in humans and animal models) support the relevance of Zn and Se for both the innate and adoptive immune response. Moreover, Zn and Se are strictly involved in the synthesis and regulation of activity of proteins and enzymes, e.g., metallothioneins (MT) and glutathione peroxidase (GPX), that are necessary for our endogenous antioxidant response. This is clearly important to protect our cells from oxidative damage and to slow the decline of our immune system with aging. Age-related changes affecting tissue levels of Zn and Se may indicate that the risk of Zn and Se deficiency increases with aging. However, it is still unclear which of these changes can be the consequence of a “real deficiency” and which can be part of our physiological compensatory response to the accumulating damage occurring in aging. Furthermore, the upregulation of antioxidant proteins (Zn and Se dependent) may be a manifestation of self-induced oxidative stress. By the way, Zn and Se dependent proteins are modulated not only by nutritional status, but also by well-known hallmarks of aging that play antagonistic functions, such as the deregulated nutrient sensing pathways and cellular senescence. Thus, it is not an easy task to conduct Zn or Se supplementation in elderly and it is emerging consistent that these kind of supplementation requires an individualized approach. Anyway, there is consistent support that supplementation with Zn using doses around 10 mg/day is generally safe in elderly and may even improve part of immune performances in those subjects with a baseline deficiency. Regarding Se supplementation, it may induce both beneficial and detrimental effects on cellular immunity depending on the form of Se, supplemental dose, and delivery matrix. The nutritional association of supplements based on “Zn plus Se” is hypothesized to provide additional benefits, but this will likely need a more complex individualized approach. The improvement of our knowledge around screening and detection of Zn and Se deficiency in aging could lead to substantial benefits in terms of efficacy of nutritional supplements aimed at ameliorate performance and health in aging.
Collapse
|
6
|
Jakovac H, Grubić Kezele T, Radošević-Stašić B. Expression Profiles of Metallothionein I/II and Megalin in Cuprizone Model of De- and Remyelination. Neuroscience 2018; 388:69-86. [PMID: 30025861 DOI: 10.1016/j.neuroscience.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022]
Abstract
Copper chelator cuprizone (CPZ) is neurotoxicant, which selectively disrupts oligodendroglial respiratory chain, leading to oxidative stress and subsequent apoptosis. Demyelination is, however, followed by spontaneous remyelination owing to the activation of intrinsic CNS repair mechanisms. To explore the participation of metallothioneins (MTs) in these processes, in this study we analyzed the expression profiles of MT-I/II and their receptor megalin (low-density lipoprotein receptor related protein-2) in the brain of mice subjected to different protocols of CPZ feeding. Experiments were performed in female C57BL/6 mice fed with 0.25% CPZ during 1, 3 and 5 weeks. They were sacrificed immediately after feeding with CPZ or 2 weeks after the withdrawal of CPZ. The data showed that CPZ-induced demyelination was followed by high astrogliosis and enhanced expression of MTs and megalin in white (corpus callosum and internal capsule) and gray matter of the brain (cortex, hippocampus, and cerebellum). Moreover, in numerous cortical neurons and progenitor cells the signs of MT/megalin interactions and Akt1 phosphorylation was found supporting the hypothesis that MTs secreted from the astrocytes might directly affect the neuronal differentiation and survival. Furthermore, in mice treated with CPZ for 5 weeks the prominent MTs and megalin immunoreactivities were found on several neural stem cells and oligodendrocyte progenitors in subgranular zone of dentate gyrus and subventricular zone of lateral ventricles pointing to high modulatory effect of MTs on adult neuro- and oligodendrogenesis. The data show that MT I/II perform important cytoprotective and growth-regulating functions in remyelinating processes activated after toxic demyelinating insults.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia.
| |
Collapse
|
7
|
Moreno-Villanueva M, Bürkle A. Epigenetic and redox biomarkers: Novel insights from the MARK-AGE study. Mech Ageing Dev 2018; 177:128-134. [PMID: 29969595 DOI: 10.1016/j.mad.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial process that affects most, if not all, of the body's tissues and organs and can be defined as the accumulation of physical and psychological changes in a human being over time. The rate of ageing differs between individuals of the same chronological age, meaning that 'biological age' of a person may be different from 'chronological age'. Furthermore, ageing represents a very potent risk factor for diseases and disability in humans. Therefore, establishment of markers of biological ageing is important for preventing age-associated diseases and extending health span. MARK-AGE, a large-scale European study, aimed at identifying a set of biomarkers which, as a combination of parameters with appropriate weighting, would measure biological age better than any marker in isolation. But beyond the identification of useful biomarkers, MARK-AGE provided new insights in age-associated specific cellular processes, such as DNA methylation, oxidative stress and the regulation of zinc homeostasis.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
8
|
Giacconi R, Costarelli L, Piacenza F, Basso A, Bürkle A, Moreno-Villanueva M, Grune T, Weber D, Stuetz W, Gonos ES, Schön C, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Franceschi C, Hervonen A, Slagboom E, Ciccarone F, Zampieri M, Caiafa P, Jansen E, Dollé MET, Breusing N, Mocchegiani E, Malavolta M. Zinc-Induced Metallothionein in Centenarian Offspring From a Large European Population: The MARK-AGE Project. J Gerontol A Biol Sci Med Sci 2017; 73:745-753. [DOI: 10.1093/gerona/glx192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| | - Andrea Basso
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Claudio Franceschi
- CIG-Interdepartmental Center “L. Galvani”, Alma Mater Studiorum, University of Bologna, Italy
| | | | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, The Netherlands
| | - Fabio Ciccarone
- Department of Biology, University of Rome “Tor Vergata”, Italy
| | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Italy
- Pasteur Institute-Fondazione Cenci Bolognetti, Rome, Italy
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eugenio Mocchegiani
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, IRCCS-INRCA, Ancona, Italy
| |
Collapse
|
9
|
Malavolta M, Costarelli L, Giacconi R, Basso A, Piacenza F, Pierpaoli E, Provinciali M, Ogo OA, Ford D. Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Exp Gerontol 2017; 99:35-45. [PMID: 28918363 DOI: 10.1016/j.exger.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Endothelial cell senescence and Zn nutritional status influence cardiovascular disease. The influence of Zn appears dichotomous, hence it is imperative to understand the relationship with cellular senescence to improve knowledge about the molecular and cellular basis of the disease. Here we aimed to determine: 1) the impact of chronic exposure to a moderately high dose of Zn on senescence of endothelial cells; 2) the changes in Zn homeostasis during the lifespan of primary cultured endothelial cells; and 3) the susceptibility of proliferating and senescent endothelial cells to cell death after short term exposure to increasing doses of Zn and of the Zn chelator TPEN. Chronic exposure to Zn accelerated senescence and untreated cells at later passages, where doubling time had increased, displayed relocation of labile Zn and altered expression of genes involved in the response to Zn toxicity, including SLC30A1, SLC39A6, SLC30A5, SLC30A10 and metallothioneins, indicating that senescent cells have altered zinc homeostasis. Most Zn-dependent genes that were expressed differently between early and late passages were correlated with changes in the expression of anti-apoptotic genes. Short-term treatment with a high dose of Zn leads to cell death, but only in the population of cells at both earlier and later passages that had already entered senescence. In contrast, Zn depletion led to death of cells at earlier but not later passages, which suggests that there are sub-populations of senescent cells that are resistant to Zn depletion. This resistant senescent cell population may accumulate under conditions of Zn deficiency and contribute to vascular pathology.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy.
| | - Laura Costarelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Ogo A Ogo
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Dianne Ford
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Hall JA, McElwee MK, Freedman JH. Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. PLoS One 2017. [PMID: 28632756 PMCID: PMC5478092 DOI: 10.1371/journal.pone.0177432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that aging results from the lifelong accumulation of intracellular damage via reactions with reactive oxygen species (ROS). Metallothioneins are conserved cysteine-rich proteins that function as efficient ROS scavengers and may affect longevity. To better understand mechanisms controlling metallothionein expression, the regulatory factors and pathways that controlled cadmium-inducible transcription of the C. elegans metallothionein gene, mtl-1, were identified. The transcription factor ATF-7 was identified in both ethylmethanesulfonate mutagenesis and candidate gene screens. PMK-1 and members of the insulin signaling pathway, PDK-1 and AKT-1/2, were also identified as mtl-1 regulators. Genetic and previous results support a model for the regulation of cadmium-inducible mtl-1 transcription based on the derepression of the constitutively active transcription factor ELT-2. In addition, knockdown of the mammalian homologs of PDK1 and ATF7 in HEK293 cells resulted in changes in metallothionein expression, suggesting that this pathway was evolutionarily conserved. The insulin signaling pathway is known to influence the aging process; however, various factors responsible for affecting the aging phenotype are unknown. Identification of portions of the insulin signaling pathway as regulators of metallothionein expression supports the hypothesis that longevity is affected by the expression of this efficient ROS scavenger.
Collapse
Affiliation(s)
- Julie A. Hall
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Matthew K. McElwee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
11
|
Youssof AL, Kassim NLA, Rashid SA, De Ley M, Rahman MT. Zinc Content in Cord Blood Is Associated with Maternal Age and Parity. Biol Trace Elem Res 2017; 175:17-26. [PMID: 27250493 DOI: 10.1007/s12011-016-0760-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022]
Abstract
At childbirth (parturition), zinc (Zn) homeostasis in cord blood (CB) can be affected by a number of factors: Zn in maternal blood, parturition related stress as well as metallothionein (MT). Both Zn and stress are known inducers of MT which is primarily involved in Zn homeostasis. This study analyzed Zn concentration [Zn], in CB components and MT-2A transcription in CB mononuclear cells (MNC) in relation to primiparous and multiparous childbirth. [Zn] in CB (n = 47) plasma, erythrocytes, and MNCs were measured by atomic absorption spectrophotometry (λ = 213.9 nm). The MT-2A transcription in CB-MNC was quantified using real-time PCR. Significant correlations (Pearson r) were found between: plasma-[Zn] and erythrocyte-[Zn] (p = 0.002); [Zn] and MT-2A messenger RNA (mRNA) (p = 0.000) in CB-MNC. Student's t tests showed higher levels of MT-2A mRNA and MNC-[Zn] in CB of older (≥25 years) compared to younger mothers (≤24 years) (p = 0.043 and p = 0.016, respectively). Significantly higher [Zn] was found in CB plasma (p = 0.017) and MNC (p = 0.041) of older primiparous compared to the younger primiparous and older multiparous mothers respectively. MT-2A mRNA in CB-MNC was significantly lower in CB of younger primiparous mothers compared to their older counterparts (p = 0.001). Path analysis showed that MNC-[Zn] (β = 0.83; p = 0.000) had a greater influence on MT-2A mRNA expression, compared to parity (β = -0.14; p = 0.033). Higher [Zn] in CB of primiparous mothers could be linked to higher stress during parturition, however, might be beneficial for the growth and development of the child. Together MNC-[Zn] and parity contributed ~70 % of the MT-2A transcription in CB-MNC.
Collapse
Affiliation(s)
- Ayman Lee Youssof
- Faculty of Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200, Kuantan, Malaysia
| | - Noor Lide Abu Kassim
- Faculty of Dentistry, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200, Kuantan, Malaysia.
- Faculty of Nursing, Umm Al-Qura University, Mecca, Saudi Arabia.
| | - Siti Aishah Rashid
- Faculty of Science, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200, Kuantan, Malaysia
| | - Marc De Ley
- Department of Chemistry, Faculty of Science, KU Leuven, Celestijnenlaan 200G, Box 2413, B-3001, Heverlee, Belgium
| | | |
Collapse
|
12
|
Biomarkers of Aging: From Function to Molecular Biology. Nutrients 2016; 8:nu8060338. [PMID: 27271660 PMCID: PMC4924179 DOI: 10.3390/nu8060338] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.
Collapse
|
13
|
Serum copper to zinc ratio: Relationship with aging and health status. Mech Ageing Dev 2015; 151:93-100. [DOI: 10.1016/j.mad.2015.01.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
|
14
|
Kruseova J, Hynek D, Adam V, Kizek R, Prusa R, Hrabeta J, Eckschlager T. Serum metallothioneins in childhood tumours-a potential prognostic marker. Int J Mol Sci 2013; 14:12170-85. [PMID: 23743828 PMCID: PMC3709780 DOI: 10.3390/ijms140612170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 12/13/2022] Open
Abstract
Metallothioneins (MT) are low molecular weight, cysteine-rich proteins maintaining metal ions homeostasis. They play a role in carcinogenesis and may also cause chemoresistance. The aim of the study was to explore the importance of MT serum levels in children suffering from malignant tumours. This prospective study involves examination of 865 samples from 172 patients with malignant tumours treated from 2008 to 2011 at University Hospital Motol. MT serum levels were determined using differential pulse voltammetry-Brdicka reaction. Mean MT level was 2.7 ± 0.5 μM. There was no statistically significant difference between MT levels in different tumours. We also did not find any correlation between MT levels and response to therapy or clinical stages. However, we found a positive correlation between MT levels and age (p = 0.009) and a negative correlation with absolute lymphocyte number (p = 0.001). The fact that patients who had early disease recurrence had lower MT levels during the treatment (complete remission 2.67 vs. recurring 2.34, p = 0.001) seems to be important for clinical practice. Accordingly we believe that there is benefit in further studies of serum MT levels in tumours.
Collapse
Affiliation(s)
- Jarmila Kruseova
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ 613 00, Czech Republic; E-Mails: (D.H.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ 616 00, Czech Republic
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mail:
| | - Jan Hrabeta
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Medical Faculty and University Hospital Motol, V Uvalu 84, Prague CZ 150 06, Czech Republic; E-Mails: (J.K.); (J.H.)
| |
Collapse
|
15
|
Malavolta M, Basso A, Piacenza F, Giacconi R, Costarelli L, Pierpaoli S, Mocchegiani E. Survival study of metallothionein-1 transgenic mice and respective controls (C57BL/6J): influence of a zinc-enriched environment. Rejuvenation Res 2012; 15:140-3. [PMID: 22533418 DOI: 10.1089/rej.2011.1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of metallothioneins (MTs) in aging is not completely understood. Several studies have shown evidence that these proteins could represent a defense system against oxidative damage, but survival studies on mice overexpressing MTs are poor. Here we describe a survival study performed on old MT-1-overexpressing mice (MT-TG) and their respective controls (C57BL/6J) fed a standard or zinc (Zn)-supplemented diet. MT-TG mice had significantly increased survival compared with control. Zn supplementation affects the survival curves of MT-TG and C57BL/6J mice differently. This study poses the basis for intervention based on gene therapy with MTs to enhance the health span of laboratory mice.
Collapse
Affiliation(s)
- Marco Malavolta
- Nutrition and Aging Centre, Scientific and Technological Pole INRCA, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 2012; 11:297-319. [PMID: 22322094 DOI: 10.1016/j.arr.2012.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023]
Abstract
In ageing, alterations in inflammatory/immune response and antioxidant capacity lead to increased susceptibility to diseases and loss of mobility and agility. Various essential micronutrients in the diet are involved in age-altered biological functions. Micronutrients (zinc, copper, iron) play a pivotal role either in maintaining and reinforcing the immune and antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for a correct inflammatory/immune response. By the other side, the genetic inter-individual variability may affect the absorption and uptake of the micronutrients (nutrigenetic approach) with subsequent altered effects on inflammatory/immune response and antioxidant activity. Therefore, the individual micronutrient-gene interactions are fundamental to achieve healthy ageing. In this review, we report and discuss the role of micronutrients (Zn, Cu, Fe)-gene interactions in relation to the inflammatory status and the possibility of a supplement in the event of a micronutrient deficiency or chelation in presence of micronutrient overload in relation to specific polymorphisms of inflammatory proteins or proteins related of the delivery of the micronutriemts to various organs and tissues. In this last context, we report the protein-metal speciation analysis in order to have, coupled with micronutrient-gene interactions, a more complete picture of the individual need in micronutrient supplementation or chelation to achieve healthy ageing and longevity.
Collapse
|
17
|
Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M. Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach. Biogerontology 2011; 12:455-65. [PMID: 21503725 DOI: 10.1007/s10522-011-9337-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/10/2011] [Indexed: 01/09/2023]
Abstract
Ageing is an inevitable biological process associated with gradual and spontaneous biochemical and physiological changes and increased susceptibility to diseases. Nutritional factor, zinc, known to be involved in improving immunity, may remodel some of the age-associated changes, leading to a healthy ageing. "In Vitro" studies involving human lymphocytes exposed to endotoxins, and "in vivo" studies comparing old and young mice fed with low dietary zinc suggest that zinc is important for both innate and adaptive immune efficiency, and more optimal inflammatory/immune response. The intracellular zinc homeostasis is mainly regulated by Metallothioneins (MT), via ion release through the reduction of thiol groups in MT molecule. These processes are crucial because mediating the zinc signalling within the immune cells assigning to zinc a role of "second messenger". Zinc homeostasis is altered in ageing partly due to higher expression levels of MT, leading to an increased sequestration of zinc, resulting in less availability of free intracellular zinc. Improvement of immune functions and stress response systems occurs in elderly after physiological zinc supplementation. The main reason behind these effects seems to be related to a like "hormetic" response induced by zinc. However, the choice of old subjects for zinc supplementation has to be performed in relationship to the specific genetic background of MT and pro-inflammatory cytokine (IL-6) because the latter is involved both in MT gene expression and in intracellular zinc homeostasis. Old subjects carrying GG genotypes (termed C- carriers) in IL-6--174G/C locus display increased IL-6 production, low intracellular zinc ion availability, impaired innate immune response and enhanced MT. By contrast, old subjects carrying GC and CC genotypes (termed C+ carriers) in the same IL-6--174 locus displayed satisfactory intracellular zinc and innate immune response. Moreover, male carriers of C+ allele are more prone to reach centenarian age than C- ones. Therefore, old C- subjects are likely to benefit more from zinc supplementation restoring NK cell cytotoxicity and improving the zinc status. Plasma zinc deficiency and the altered immune response is more evident when the genetic variations of IL-6 polymorphism are associated with the genetic variations of MT1A in position +647, suggesting that the genetic variations of IL-6 and MT1A are very useful tools for the identification of old people who effectively need zinc supplementation.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Nutrition and Ageing Centre, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Ma C, Li LF, Chen X. Expression of metallothionein-I and II in skin ageing and its association with skin proliferation. Br J Dermatol 2011; 164:479-82. [DOI: 10.1111/j.1365-2133.2010.10117.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Abstract
Ageing is an inevitable biological process with gradual and spontaneous biochemical and physiological changes and increased susceptibility to diseases. The nutritional factor, zinc, may remodel these changes with subsequent healthy ageing, because zinc improves the inflammatory/immune response as shown by in vitro and in vivo studies. The intracellular zinc homeostasis is regulated by buffering metallothioneins (MT) and zinc transporters (ZnT and ZIP families) that mediate the intracellular zinc signalling assigning to zinc a role of ‘second messenger’. In ageing, the intracellular zinc homeostasis is altered, because high MT are unable to release zinc and some zinc transporters deputed to zinc influx (ZIP family) are defective leading to low intracellular zinc content for the immune efficiency. Physiological zinc supplementation in the elderly improves these functions. However, the choice of old subjects for zinc supplementation has to be performed in relation to the specific genetic background of MT and IL-6, because the latter is involved both in MTmRNA and in intracellular zinc homeostasis. Old subjects carrying GG genotypes (C–carriers) in the IL-6–174G/C locus display high IL-6, low intracellular zinc content, impaired innate immunity and enhanced MT. Old subjects carrying GC and CC genotypes (C+carriers) display satisfactory intracellular zinc content, adequate innate immunity and are more prone to reach longevity. Zinc supplementation in old C–carriers restores natural killer cell cytotoxicity and zinc status. The genetic variations of the IL-6−174G/C locus when associated with those of the MT1A+647A/C locus are useful tools for the choice of old people for zinc supplementation.
Collapse
|
20
|
Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:501-506. [PMID: 20821471 DOI: 10.1002/etc.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
There has been growing interest in the study and conservation of bats throughout the world. Declines in their absolute numbers in recent decades are due, in part, to the fact that insectivorous bats may bioaccumulate toxic pollutants. The purpose of the present study was to quantify heavy metal concentrations in kidney, liver, and pectoral muscle samples in relation to metallothionein (MT) levels. In total, 106 bats belonging to 11 European species (i.e., Myotis myotis, Myotis daubentonii, Myotis brandtii, Myotis nattereri, Myotis emarginatus, Myotis mystacinus, Pipistrellus pipistrellus, Pipistrellus nathusii, Pipistrellus pygmaeus, Nyctalus noctulla, Eptesicus serotinus) were used for the study. The highest MT levels were found in Pipistrellus pipistrellus. High MT levels were also found in juvenile bats and aquatic-insect-foraging species. Cadmium was found only in the liver and kidney of Myotis myotis, except for a solitary finding in Pipistrellus pipistrellus. Myotis myotis juveniles had significantly higher liver and kidney Zn concentrations than adults. Interestingly, the liver Pb concentration was approximately two times higher in females than in males of Myotis myotis. The same gender difference was found for kidney Zn concentration in Pipistrellus pipistrellus. The present study confirms exposure of vespertilionid bats to toxic heavy metals (Pb, Cd) in the Czech Republic and provides data on the essential element Zn and the metal-binding protein MT in bats foraging over aquatic, aquatic and terrestrial, and terrestrial habitats.
Collapse
Affiliation(s)
- Jiri Pikula
- University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cipriano C, Tesei S, Malavolta M, Giacconi R, Muti E, Costarelli L, Piacenza F, Pierpaoli S, Galeazzi R, Blasco M, Vera E, Canela A, Lattanzio F, Mocchegiani E. Accumulation of cells with short telomeres is associated with impaired zinc homeostasis and inflammation in old hypertensive participants. J Gerontol A Biol Sci Med Sci 2009; 64:745-51. [PMID: 19359441 DOI: 10.1093/gerona/glp048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Critical shortening of telomeres, likely associated with a considerable increase of senescent cells, can be observed in PBMC of individuals aged 80 and older. We investigated the relationship between critical telomere shortening and zinc status in healthy or hypertensive participants with or without cardiovascular disease in old and very old participants. Telomere shortening and accumulation of cells with short telomeres (percent of cells with short telomeres) in advancing age was evident in patients and healthy controls, but exacerbated in those patients aged 80 and older. Moreover, in very old patients, the accumulation of % CST may impair intracellular zinc homeostasis and metallothioneins expression, which itself is linked to an increased number of inflammatory agents, thereby suggesting the existence of a possible causal relationship between % CST and zinc homeostasis. The determination of % CST could be a more reliable means than the simple measure of telomere length as fundamental parameter in ageing to determine whether individuals are still able to respond to stress.
Collapse
Affiliation(s)
- Catia Cipriano
- Immunology Center, Research Department Istituto Nazionale Riposo e Cura per Anziani, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|