1
|
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. ENVIRONMENTAL RESEARCH 2019; 178:108683. [PMID: 31539823 DOI: 10.1016/j.envres.2019.108683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
As a consequence of their unique characteristics, the use of Engineered Nanomaterials (ENMs) is rapidly increasing in industrial, agricultural products, as well as in environmental technology. However, this fast expansion and use make likely their release into the environment with particular concerns for the aquatic ecosystems, which tend to be the ultimate sink for this type of contaminants. Considering the settling behaviour of particulates, benthic organisms are more likely to be exposed to these compounds. In this way, the present review aims to summarise the most recent data available from the literature on ENMs behaviour and fate in aquatic ecosystems, focusing on their ecotoxicological impacts towards marine and estuarine bivalves. The selection of ENMs presented here was based on the OECD's Working Party on Manufactured Nanomaterials (WPMN), which involves the safety testing and risk assessment of ENMs. Physical-chemical characteristics and properties, applications, environmental relevant concentrations and behaviour in aquatic environment, as well as their toxic impacts towards marine bivalves are discussed. Moreover, it is also identified the impacts derived from the simultaneous exposure of marine organisms to ENMs and climate changes as an ecologically relevant scenario.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - José M Monserrat
- Universidade Federal Do Rio Grande, FURG, Instituto de Ciências Biológicas (ICB), Av Itália km 8 s/n - Caixa Postal 474, 96200-970, Rio Grande, RS, Brazil
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Keshandehghan A, Nikkhah S, Tahermansouri H, Heidari-Keshel S, Gardaneh M. Co-Treatment with Sulforaphane and Nano-Metformin Molecules Accelerates Apoptosis in HER2+ Breast Cancer Cells by Inhibiting Key Molecules. Nutr Cancer 2019; 72:835-848. [DOI: 10.1080/01635581.2019.1655073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Keshandehghan
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S. Nikkhah
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - H. Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - S. Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Gardaneh
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
3
|
Mai HN, Nguyen LTT, Shin EJ, Kim DJ, Jeong JH, Chung YH, Lei XG, Sharma N, Jang CG, Nabeshima T, Kim HC. Astrocytic mobilization of glutathione peroxidase-1 contributes to the protective potential against cocaine kindling behaviors in mice via activation of JAK2/STAT3 signaling. Free Radic Biol Med 2019; 131:408-431. [PMID: 30592974 DOI: 10.1016/j.freeradbiomed.2018.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Compelling evidence indicates that oxidative stress contributes to cocaine neurotoxicity. The present study was performed to elucidate the role of the glutathione peroxidase-1 (GPx-1) in cocaine-induced kindling (convulsive) behaviors in mice. Cocaine-induced convulsive behaviors significantly increased GPx-1, p-IkB, and p-JAK2/STAT3 expression, and oxidative burdens in the hippocampus of mice. There was no significant difference in cocaine-induced p-IkB expression between non-transgenic (non-TG) and GPx-1 overexpressing transgenic (GPx-1 TG) mice, but significant differences were observed in cocaine-induced p-JAK2/STAT3 expression and oxidative stress between non-TG and GPx-1 TG mice. Cocaine-induced glial fibrillary acidic protein (GFAP)-labeled astrocytic level was significantly higher in the hippocampus of GPx-1 TG mice. Triple-labeling immunocytochemistry indicated that GPx-1-, p-STAT3-, and GFAP-immunoreactivities were co-localized in the same cells. AG490, a JAK2/STAT3 inhibitor, but not pyrrolidone dithiocarbamate, an NFκB inhibitor, significantly counteracted GPx-1-mediated protective potentials (i.e., anticonvulsant-, antioxidant-, antiapoptotic-effects). Genetic overexpression of GPx-1 significantly attenuated proliferation of Iba-1-labeled microglia induced by cocaine in mice. However, AG490 or astrocytic inhibition (by GFAP antisense oligonucleotide and α-aminoadipate) significantly increased Iba-1-labeled microglial activity and M1 phenotype microglial mRNA levels, reflecting that proinflammatory potentials were mediated by AG490 or astrocytic inhibition. This microglial activation was less pronounced in GPx-1 TG than in non-TG mice. Furthermore, either AG490 or astrocytic inhibition significantly counteracted GPx-1-mediated protective potentials. Therefore, our results suggest that astrocytic modulation between GPx-1 and JAK2/STAT3 might be one of the underlying mechanisms for protecting against convulsive neurotoxicity induced by cocaine.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Lan Thuy Ty Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi 470-1192, Japan; Aino University, Ibaraki 576-0012, Japan; Japanese Drug Organization of Appropriate and Research, Nagoya 468-0069, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
4
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
5
|
Gardaneh M, Shojaei S, Rahimi Shamabadi A, Akbari P. Breast Cancer Cell Apoptosis is Synergistically Induced by Curcumin, Trastuzumab, and Glutathione Peroxidase-1 but Robustly Inhibited by Glial Cell Line-Derived Neurotrophic Factor. Nutr Cancer 2018; 70:288-296. [PMID: 29297700 DOI: 10.1080/01635581.2018.1412486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We hypothesized that synergy between curcumin (CURC), trastuzumab (TZMB), and glutathione peroxidase-1 (GPX-1) accelerates breast cancer (BC) cell apoptosis which is inhibited by glial cell line-derived neurotrophic factor (GDNF). We measured survival of BC cell lines treated or cotreated with CURC and TZMB, and then with GDNF, before measuring expression levels of growth and apoptosis genes. These experiments were also repeated on SKBR3 cells transiently expressing GPX-1. CURC+TZMB cotreatment induced BC cell apoptosis more significantly than single treatment. GDNF highly inhibited CURC+TZMB toxicity and restored survival. Ectopic overexpression of GPX-1 per se induced SKBR3 cell death that was accelerated upon CURC+TZMB cotreatment. This substantial death induction was inhibited by GDNF more robustly than in single-treated cells. All these changes correlated with changes in expression levels of key molecules and were further confirmed by flow cytometry and correlation analysis. Our data indicate apoptotic induction is jointly shaped in BC cells by CURC, TZMB, and GPX-1 which correlates directly with their tripartite synergism and inversely with GDNF progrowth effects. In light of the active presence of GDNF in tumor microenvironment and necessity to overcome drug resistance, our findings can help in designing combined therapeutic strategies with implications for challenging TZMB resistance in BC.
Collapse
Affiliation(s)
- M Gardaneh
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - S Shojaei
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - A Rahimi Shamabadi
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - P Akbari
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| |
Collapse
|
6
|
GDNF induces RET–SRC–HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Breast Cancer Res Treat 2017; 162:231-241. [DOI: 10.1007/s10549-016-4078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
|
7
|
Zealley B, de Grey AD. Commentary on Some Recent Theses Relevant to Combating Aging: February 2015. Rejuvenation Res 2015; 18:90-5. [DOI: 10.1089/rej.2015.1675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
8
|
Revilla S, Ursulet S, Álvarez-López MJ, Castro-Freire M, Perpiñá U, García-Mesa Y, Bortolozzi A, Giménez-Llort L, Kaliman P, Cristòfol R, Sarkis C, Sanfeliu C. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20:961-72. [PMID: 25119316 DOI: 10.1111/cns.12312] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 02/01/2023] Open
Abstract
AIMS Glial cell-derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimer's disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene-therapy procedures. METHODS Recombinant lentiviral vectors were used to overexpress GDNF gene in hippocampal astrocytes of 3xTg-AD mice in vivo, and also in the MC65 human neuroblastoma that conditionally overexpresses the 99-residue carboxyl-terminal (C99) fragment of the amyloid precursor protein. RESULTS After 6 months of overexpressing GDNF, 10-month-old 3xTg-AD mice showed preserved learning and memory, while their counterparts transduced with a green fluorescent protein vector showed cognitive loss. GDNF therapy did not significantly reduce amyloid and tau pathology, but rather, induced a potent upregulation of brain-derived neurotrophic factor that may act in concert with GDNF to protect neurons from atrophy and degeneration. MC65 cells overexpressing GDNF showed an abolishment of oxidative stress and cell death that was at least partially mediated by a reduced presence of intracellular C99 and derived amyloid β oligomers. CONCLUSIONS GDNF induced neuroprotection in the AD experimental models used. Lentiviral vectors engineered to overexpress GDNF showed to be safe and effective, both as a potential gene therapy and as a tool to uncover the mechanisms of GDNF neuroprotection, including cross talk between astrocytes and neurons in the injured brain.
Collapse
Affiliation(s)
- Susana Revilla
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
10
|
Esmaeilzadeh E, Gardaneh M, Gharib E, Sabouni F. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis. Neurochem Res 2013; 38:1590-604. [PMID: 23636806 DOI: 10.1007/s11064-013-1061-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 01/30/2023]
Abstract
We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.
Collapse
Affiliation(s)
- Emran Esmaeilzadeh
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Pazhoohesh Blvd, Tehran-Karaj HWY Kilometer 15, PO Box 14965/161, Tehran, I. R. Iran
| | | | | | | |
Collapse
|