1
|
Qin Y, Hu C, Jin J, Chao Y, Wang D, Xia F, Ruan C, Jiang C, Guan M, Zou C. Bilobalide ameliorates osteoporosis by influencing the SIRT3/NF-κB axis in osteoclasts and promoting M2 polarization in macrophages. Int J Biol Macromol 2024; 281:136504. [PMID: 39395513 DOI: 10.1016/j.ijbiomac.2024.136504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Osteoporosis is a systemic disease with complex etiology and high prevalence, resulting in a huge economic burden. For a long time, the search for new therapeutic pharmaceuticals has never stopped. Bone loss is related to the imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. In recent years, the role of immunity and inflammation in the development of osteoporosis has studied well. For example, various cytokines, chemokines and endocrine factors regulate osteoclastogenesis via activating different macrophage subtypes, including pro-inflammatory M1 and anti-inflammatory M2. Bilobalide (Bil), an active Ginkgo biloba ingredient, has garnered great interest because of its anti-oxidant and anti-inflammatory activities. In this study, we found that Bil can attenuate osteoclast generation induced by receptor activator of nuclear factor- kappa B ligand (RANKL) through upregulating the sirtuin 3 (SIRT3) and negatively regulating NF-κB signaling. Furthermore, Bil promotes M2 polarization of macrophages in a dose-dependent manner. In vivo studies provided evidence that Bil improves bone density in osteoporosis mice models. Based on the above results, we have reason to believe that Bil has potential therapeutic value in osteoclast-mediated bone loss and offers an effective option for long-term osteoporosis management.
Collapse
Affiliation(s)
- YiFang Qin
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - ChenXi Hu
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - JiaLe Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - YunQi Chao
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - DongYu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - FangLing Xia
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - ChenXin Ruan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Affiliated to Wenzhou Medical University, Linhai 317000, China.
| | - Ming Guan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States; Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States; Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - ChaoChun Zou
- Department of Endocrinology, Children's Hospital,Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
2
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
3
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xu K, Li J, Wen R, Chang B, Cheng Y, Yi X. Role of SIRT3 in bone homeostasis and its application in preventing and treating bone diseases. Front Pharmacol 2023; 14:1248507. [PMID: 38192409 PMCID: PMC10773770 DOI: 10.3389/fphar.2023.1248507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Bone homeostasis refers to the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption and the maintenance of stable bone mass. SIRT3 is a class of mitochondrial protein deacetylase that influences various mitochondrial functions and is involved in the mechanisms underlying resistance to aging; regulation of bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts; and development of osteoporosis, osteoarthritis, and other bone diseases. Moreover, exercise affects bones through SIRT3. Thus, studies on SIRT3 may provide insights for the treatment of bone diseases. Although SIRT3 can exert multiple effects on bone, the specific mechanism by which it regulates bone homeostasis remains unclear. By evaluating the relevant literature, this review discusses the structure and function of SIRT3, reveals the role and associated mechanisms of SIRT3 in regulating bone homeostasis and mediating bone health during exercise, and highlights the potential pharmacological value of SIRT3 in treating bone diseases.
Collapse
Affiliation(s)
- Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
5
|
Gao X, Liang X, Liu B, Hong Y, He H, Shen Y, Chen J, Huang X, Hu B, Li W, Li X, Zhang Y. Downregulation of ALKBH5 rejuvenates aged human mesenchymal stem cells and enhances their therapeutic efficacy in myocardial infarction. FASEB J 2023; 37:e23294. [PMID: 37966425 DOI: 10.1096/fj.202301292r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)-based therapy is limited by cell senescence. N6-methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA-treated AMSCs. More importantly, compared with AMSCs, shALKBH5-AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification-dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bei Hu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuelin Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
7
|
Huang X, Liu B, Liang Y, Mai C, Shen Y, Huang X, Chen J, Liang X, Hu B, Li W, Li X, Zhang Y. TRAF3IP2 drives mesenchymal stem cell senescence via regulation of NAMPT-mediated NAD biosynthesis. Heliyon 2023; 9:e19505. [PMID: 37809895 PMCID: PMC10558736 DOI: 10.1016/j.heliyon.2023.e19505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
The cellular senescence of mesenchymal stem cells (MSCs) limits their application in regenerative medicine. This study aimed to clarify the role of TNF receptor-associated factor 3 interacting protein 2 (TRAF3IP2), a pro-inflammatory cytoplasmic adaptor protein, in regulating MSC senescence and to explore the potential mechanisms. Methods: MSC senescence was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The expression of TRAF3IP2 and senescence-related proteins was detected by Western blotting. The nicotinamide adenine dinucleotide (NAD+) level and nicotinamide phosphoribosyl transferase (NAMPT) expression in MSCs was measured. Results: Compared with that in MSCs isolated from young donors (YMSCs), the expression of TRAF3IP2 was greatly increased in MSCs derived from aged donors (AMSCs). Overexpression of TRAF3IP2 accelerated YMSC senescence whereas downregulation significantly rescued cellular senescence. The protein level of NAMPT and the level of NAD+ were significantly decreased in AMSCs compared with YMSCs. Mechanistically, TRAF3IP2 induced MSC senescence via downregulation of NAMPT expression and NAD + level by inhibiting the AMPK signaling pathway. These effects were partially reversed by treatment with an AMPK or NAMPT activator. Conclusion: We revealed that TRAF3IP2 accelerated MSC senescence via downregulation of NAMPT-mediated NAD biosynthesis by mediation of the AMPK pathway, highlighting a novel means to rejuvenate senescent MSCs.
Collapse
Affiliation(s)
- Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Liang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Shen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Chen
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Huang H, Zhang W, Su J, Zhou B, Han Q. Spermidine Retarded the Senescence of Multipotent Mesenchymal Stromal Cells In Vitro and In Vivo through SIRT3-Mediated Antioxidation. Stem Cells Int 2023; 2023:9672658. [PMID: 37234959 PMCID: PMC10208764 DOI: 10.1155/2023/9672658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) expand in vitro and undergo replicative senescence, thereby restricting their clinical utilization. Thus, an effective strategy is required to impede MSC senescence. Since spermidine (SPD) supplementation can prolong the lifespan of yeast by inhibiting oxidative stress, spermidine is a potential option for delaying MSC senescence. In this study, to test our hypothesis, we first isolated primary human umbilical cord mesenchymal stem cells (hUCMSCs). Subsequently, the appropriate SPD dose was administered during continuous cell cultivation. Next, we evaluated the antisenescence effects by SA-β-gal staining, Ki67 expression, reactive oxygen species (ROS) levels, adipogenic or osteogenic ability, senescence-associated markers, and DNA damage markers. The results revealed that early SPD intervention significantly delays the replicative senescence of hUCMSCs and constrains premature H2O2-induced senescence. Additionally, by silencing SIRT3, the SPD-mediated antisenescence effects disappear, further demonstrating that SIRT3 is necessary for SPD to exert its antisenescence effects on hUCMSCs. Besides, the findings of this study also suggest that SPD in vivo protects MSCs against oxidative stress and delays cell senescence. Thus, MSCs maintain the ability to proliferate and differentiate efficiently in vitro and in vivo, which reflects the potential clinical utilization of MSCs in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- The Center of Reproductive Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Zhang
- Department of General Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Bisheng Zhou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Qingjiang Han
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
9
|
Guo E, Sun L, Chen W, Liu C, Chen K, Jiang X, Qin X, Su J, Yang F, Tian H. Young human PRP promotes the rejuvenation of aged bone marrow mesen -chymal stem cells and the therapeutic effect on ischemic heart disease. Eur J Pharmacol 2023; 950:175775. [PMID: 37150499 DOI: 10.1016/j.ejphar.2023.175775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation is an effective treatment for ischemic heart disease, but its effectiveness is limited in aging populations due to decreased viability and injury resistance of autologous BMSCs. The purpose of this study was to compare the differences between platelet-rich plasma (PRP) derived from young and aged donors, and to investigate whether it is possible to enhance the viability of elderly human BMSCs (hBMSCs) using PRP, and to apply the rejuvenated hBMSCs for the treatment of ischemia. The key growth factors in PRP, including IGF-1, EGF, and PDGF-BB, were found to have significant differences between young and old individuals. Our results showed that PRP could enhance the proliferation, cloning, and rejuvenation of aged hBMSCs, with a superior effect observed when using PRP derived from younger donors. In the SD rat infarct model, the application of hBMSCs optimized with PRP resulted in a smaller infarct area compared to the control group (NC-Old). Specifically, the infarct area in the group treated with hBMSCs cultured with PRP from young donors (YPRP-Old) was smaller than that in the group treated with PRP from older donors (OPRP-Old). The survival rate of hBMSCs after transplantation, the number of neovascularization in the infarct area of SD rats and the recovery of cardiac function were all higher in the YPRP-Old group than the OPRP-Old group, and both groups were better than the group treated with aged hBMSCs alone. In conclusion, PRP may provide a new stem cell transplantation therapy option for ischemic diseases.
Collapse
Affiliation(s)
- Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Sun
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianling Su
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Fan Yang
- Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
11
|
Zare A, Salehpour A, Khoradmehr A, Bakhshalizadeh S, Najafzadeh V, Almasi-Turk S, Mahdipour M, Shirazi R, Tamadon A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life (Basel) 2023; 13:life13020569. [PMID: 36836926 PMCID: PMC9965891 DOI: 10.3390/life13020569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 02/22/2023] Open
Abstract
More research is being conducted on myocardial cell treatments utilizing stem cell lines that can develop into cardiomyocytes. All of the forms of cardiac illnesses have shown to be quite amenable to treatments using embryonic (ESCs) and induced pluripotent stem cells (iPSCs). In the present study, we reviewed the differentiation of these cell types into cardiomyocytes from an epigenetic standpoint. We also provided a miRNA network that is devoted to the epigenetic commitment of stem cells toward cardiomyocyte cells and related diseases, such as congenital heart defects, comprehensively. Histone acetylation, methylation, DNA alterations, N6-methyladenosine (m6a) RNA methylation, and cardiac mitochondrial mutations are explored as potential tools for precise stem cell differentiation.
Collapse
Affiliation(s)
- Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sahar Almasi-Turk
- Department of Basic Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: (M.M.); (R.S.); (A.T.)
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 7135644144, Iran
- Correspondence: (M.M.); (R.S.); (A.T.)
| |
Collapse
|
12
|
NAD +-Consuming Enzymes in Stem Cell Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4985726. [PMID: 36819783 PMCID: PMC9931471 DOI: 10.1155/2023/4985726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme used in redox reactions, energy metabolism, and mitochondrial biogenesis. NAD+ is also required as a cofactor by nonredox NAD+-dependent enzymes. Hundreds of enzymes that consume NAD+ have been identified. The NAD+-consuming enzymes are involved in a variety of cellular processes such as signal transduction, DNA repair, cellular senescence, and stem cell (SC) homeostasis. In this review, we discussed how different types of NAD+-consuming enzymes regulate SC functions and summarized current research on the roles of the NAD+ consumers in SC homeostasis. We hope to provide a more global and integrative insight to the mechanism and intervention of SC homeostasis via the regulation of the NAD+-consuming enzymes.
Collapse
|
13
|
Branco A, Moniz I, Ramalho-Santos J. Mitochondria as biological targets for stem cell and organismal senescence. Eur J Cell Biol 2023; 102:151289. [PMID: 36696809 DOI: 10.1016/j.ejcb.2023.151289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Organismal aging is impacted by the deterioration of tissue turnover mechanisms due, in part, to the decline in stem cell function. This decline can be related to mitochondrial dysfunction and underlying energetic defects that, in concert, help drive biological aging. Thus, mitochondria have been described as a potential interventional target to hinder the loss of stem cell robustness, and subsequently, decrease tissue turnover decline and age-associated pathologies. In this review, we focused our analysis on the most recent literature on mitochondria and stem cell aging and discuss the potential benefits of targeting mitochondria in preventing stem cell dysfunction and thus influencing aging.
Collapse
Affiliation(s)
- Ana Branco
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal
| | - Inês Moniz
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, Polo 2, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Centre for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
14
|
Chen K, Bai L, Lu J, Chen W, Liu C, Guo E, Qin X, Jiao X, Huang M, Tian H. Human Decidual Mesenchymal Stem Cells Obtained From Early Pregnancy Improve Cardiac Revascularization Postinfarction by Activating Ornithine Metabolism. Front Cardiovasc Med 2022; 9:837780. [PMID: 35242829 PMCID: PMC8887417 DOI: 10.3389/fcvm.2022.837780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Background Compared with bone marrow mesenchymal stem cells (BMSCs), decidual mesenchymal stem cells (DMSCs) are easy to obtain and exhibit excellent angiogenic effects, but their role in cell transplantation after myocardial infarction (MI) remains unclear. Methods BMSCs and DMSCs were harvested from healthy donors. The effects of both cell types on angiogenesis were observed in vitro. Metabonomics analysis was performed to compare different metabolites and screen critical metabolic pathways. A murine model of acute myocardial infarction (AMI) was established, which was randomized into five groups (control, BMSC, DMSC, DMSC + ODCshRNA and BMSC + ODC consisting of 50 animals, equally divided into each group). The therapeutic effect of DMSCs on MI in rats was assessed based on neovascularization and cardiac remodeling. Results DMSCs exhibited a better angiogenic effect on human umbilical vein endothelial cells (HUVECs) than BMSCs in vitro. In addition, ornithine metabolism, which is associated with vascularization, was significantly increased in DMSCs. The transplantation of DMSCs in the rat MI model significantly enhanced angiogenesis of the infarct border area and improved cardiac remodeling and dysfunction postinfarction compared with BMSCs. Furthermore, inhibition of ornithine metabolism by silencing ornithine decarboxylase (ODC) in DMSCs partly abolished the benefits of DMSC transplantation. Conclusion Compared with BMSCs, DMSCs exhibited better efficacy in improving revascularization and heart remodeling post-MI via the activation of ODC-associated ornithine metabolism.
Collapse
Affiliation(s)
- Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Bai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingtong Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Chest Surgery, The Third Hospital of Xiamen, Xiamen, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingli Huang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Mingli Huang
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hai Tian
| |
Collapse
|
15
|
Abstract
SIRT3 is an NAD+-dependent deacetylase in the mitochondria with an extensive ability to regulate mitochondrial morphology and function. It has been reported that SIRT3 participates in the occurrence and development of many aging-related diseases. Osteoporosis is a common aging-related disease characterized by decreased bone mass and fragility fractures, which has caused a huge burden on society. Current research shows that SIRT3 is involved in the physiological processes of senescence of bone marrow mesenchymal stem cells (BMSCs), differentiation of BMSCs and osteoclasts. However, the specific effects and mechanisms of SIRT3 in osteoporosis are not clear. In the current review, we elaborated on the physiological functions of SIRT3, the cell types involved in bone remodeling, and the role of SIRT3 in osteoporosis. Furthermore, it also provided a theoretical basis for SIRT3 as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopaedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Shuangshuang Wang,
| |
Collapse
|
16
|
Yang K, Pei L, Zhou S, Tao L, Zhu Y. Metformin attenuates H 2O 2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway. Exp Ther Med 2021; 22:1316. [PMID: 34630670 PMCID: PMC8495548 DOI: 10.3892/etm.2021.10751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a common metabolic disease that has a high incidence in postmenopausal women. Studies have indicated that oxidative damage plays an important role in the development of postmenopausal osteoporosis. Metformin has been showed to have the ability to relieve excessive oxidation. The aim of the present was to determine the therapeutic effect and potential mechanism of metformin in postmenopausal osteoporosis. Oxidative damage was stimulated in vitro by the addition of H2O2 to MC3T3-E1 cells and a mouse menopausal model was also constructed. Cell viability and flow cytometry experiments were performed to determine the effects of H2O2 and metformin treatment on apoptosis. Mitochondrial membrane potential was tested by JC-1 assays. Western blotting was used to detect the expression of mitochondrial apoptosis markers and antioxidant enzymes. Small interfering RNA was used to knockdown sirtuin3 (SIRT3), which was verified at the mRNA and protein levels. Bilateral ovariectomy was used to prepare menopausal mice, which were analyzed using micro-computed tomography. The results indicated that metformin is able to repair mitochondrial damage and inhibit the apoptosis of osteoblasts induced by H2O2, and also reverse bone mass loss in ovariectomized mice. Western blotting results demonstrated the involvement of SIRT3 in the production of antioxidant enzymes that are essential in protecting against mitochondrial injury. In addition, experiments with SIRT3 knockdown indicated that metformin reverses H2O2-induced osteoblast apoptosis by upregulating the expression of SIRT3 via the PI3K/AKT pathway. The results of the present reveal the pathogenesis of oxidative damage and the therapeutic effect of metformin in postmenopausal osteoporosis. They also suggest that SIRT3 is a potential drug target in the treatment of osteoporosis, with metformin being a candidate drug for modification and/or clinical application.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Pei
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Zhang H, Zhao C, Jiang G, Hu B, Zheng H, Hong Y, Cui Z, Shi L, Li X, Lin F, Ding Y, Wei L, Li M, Liang X, Zhang Y. Apelin Rejuvenates Aged Human Mesenchymal Stem Cells by Regulating Autophagy and Improves Cardiac Protection After Infarction. Front Cell Dev Biol 2021; 9:628463. [PMID: 33738284 PMCID: PMC7960672 DOI: 10.3389/fcell.2021.628463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The protective effects of mesenchymal stem cell (MSC)-based therapy for myocardial infarction (MI) are largely hampered as they age. Apelin is an endogenous ligand of its receptor APJ and plays an essential role in regulating multiple biological activities including MSC proliferation and survival. In this study, we investigated whether Apelin regulates MSC senescence and whether its overexpression could rejuvenate aged MSCs (AMSCs) to improve cardiac protection following infarction in mice. MSC senescence was evaluated by senescence-associated β-galactosidase assays. Apelin level was examined by western blotting. Autophagy was determined by transmission electron microscopy. The cardioprotective effect of AMSCs with Apelin overexpression (Apelin-AMSCs) was assessed in a mouse MI model. Apelin expression was dramatically reduced in AMSCs. Interestingly, knockdown of Apelin induced young MSCs (YMSC) senescence, whereas overexpression rescued AMSC senescence. Apelin overexpression also increased AMSC angiogenic capacity. Mechanistically, Apelin overexpression upregulated the autophagy level of AMSCs by activating AMP-activated protein kinase (AMPK) signaling, thereby rejuvenating AMSCs. Compared with AMSCs, transplantation of Apelin-AMSCs achieved better therapeutic efficacy for MI by enhancing cell survival and angiogenesis. In conclusion, our results reveal that Apelin activates AMPK to rejuvenate AMSCs by increasing autophagy and promotes cardioprotection following infarction in mice. This study identified a novel target to rejuvenate AMSCs and enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Hao Zhang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chengling Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Bei Hu
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huifeng Zheng
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhen Cui
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Linli Shi
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Lin
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Wei
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mimi Li
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Liang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelin Zhang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, China.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
19
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|