1
|
da Silva Rodrigues G, Noronha NY, Almeida ML, Sobrinho ACDS, Watanabe LM, Pinhel MADS, de Lima JGR, Zhang R, Nonino CB, Alves CRR, Bueno Júnior CR. Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women. J Appl Physiol (1985) 2023; 134:610-621. [PMID: 36701486 DOI: 10.1152/japplphysiol.00237.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This is a longitudinal single-arm clinical trial aimed to investigate whether exercise training would modify the whole blood methylation profile in healthy women. A total of 45 subjects were engaged in an exercise training protocol during a 14-wk follow up, consisting of aerobic cardiorespiratory and muscle strength exercises. Subjects were evaluated at baseline (PRE), after 7 wk of exercise training (POST 7), and after 14 wk of exercise training (POST 14). Functional primary outcomes included anthropometric, blood pressure, biochemical measurements, physical tests, and global health assessments. Blood samples were collected at each time point to determine the methylation profile using a DNA methylation array technique screening up to 850k different sites. Exercise training decreased blood pressure and triglyceride levels and enhanced physical performance, including upper- and lower-body maximum strength. Moreover, exercise training improved markers of quality of life. In the array analysis, 14 wk of exercise training changed the methylation of more than 800 sites. Across these differentially methylated sites, we found that differentially methylated sites in the promoter region were more hypermethylated after exercise training, suggesting that this hypermethylation process may affect the transcription process. When inputting the differentially methylated sites in pathway analysis, we found several metabolic pathways, including AMPK signaling, TGF-β signaling, and insulin signaling. This study demonstrates that exercise training promotes a robust change in the whole blood methylation profile and provides new insights into the key regulators of exercise-induced benefits.NEW & NOTEWORTHY We have shown that exercise training lowers blood pressure and triglyceride levels, improves physical performance, and improves quality of life in middle-aged and elderly women. Regarding epigenetic data, we noticed that more than 800 sites are differentially methylated in whole blood after physical training. We emphasize that the differentially methylated sites in the promoter region are more hypermethylated after physical training. In addition, this study shows that key members of metabolic pathways, including AMPK signaling, TGF-β signaling, and insulin signaling, are among the genes hypermethylated after physical exercise in older women.
Collapse
Affiliation(s)
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mariana L Almeida
- College of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Andressa C da S Sobrinho
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Lígia M Watanabe
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcela A de S Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - João G R de Lima
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ren Zhang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Christiano R R Alves
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Carlos R Bueno Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,College of Nursing of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Frailty in rodents: Models, underlying mechanisms, and management. Ageing Res Rev 2022; 79:101659. [PMID: 35660004 DOI: 10.1016/j.arr.2022.101659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Frailty is a clinical geriatric syndrome characterized by decreased multisystem function and increased vulnerability to adverse outcomes. Although numerous studies have been conducted on frailty, the underlying mechanisms and management strategies remain unclear. As rodents share homology with humans, they are used extensively as animal models to study human diseases. Rodent frailty models can be classified broadly into the genetic modification and non-genetic modification models, the latter of which include frailty assessment models (based on the Fried frailty phenotype and frailty index methods) and induced frailty models. Such models were developed for use in investigating frailty-related physiological changes at the gene, cellular, molecular, and system levels, including the organ system level. Furthermore, exercise, diet, and medication interventions, in addition to their combinations, could improve frailty status in rodents. Rodent frailty models provide novel and effective tools for frailty research. In the present paper, we review research progress in rodent frailty models, mechanisms, and management, which could facilitate and guide further clinical research on frailty in older adults.
Collapse
|
3
|
Ghanemi A, Yoshioka M, St-Amand J. Exercise, Diet and Sleeping as Regenerative Medicine Adjuvants: Obesity and Ageing as Illustrations. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9010007. [PMID: 35049940 PMCID: PMC8778846 DOI: 10.3390/medicines9010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
Abstract
Regenerative medicine uses the biological and medical knowledge on how the cells and tissue regenerate and evolve in order to develop novel therapies. Health conditions such as ageing, obesity and cancer lead to an impaired regeneration ability. Exercise, diet choices and sleeping pattern have significant impacts on regeneration biology via diverse pathways including reducing the inflammatory and oxidative components. Thus, exercise, diet and sleeping management can be optimized towards therapeutic applications in regenerative medicine. It could allow to prevent degeneration, optimize the biological regeneration and also provide adjuvants for regenerative medicine.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-654-2296
| |
Collapse
|
4
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|