1
|
Nie H, Wang Y, Liao Z, Zhou J, Ou C. The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif 2020; 53:e12815. [PMID: 32515024 PMCID: PMC7377939 DOI: 10.1111/cpr.12815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tumours are tumours that originate in the digestive tract and have extremely high morbidity and mortality. The main categories include: oesophageal, gastric, and colorectal cancers. Circular RNAs are a new class of non‐coding RNAs with a covalent closed‐loop structure without a 5’ cap or a 3’ poly A tail, which can encode a small amount of polypeptide. Recent studies have shown that circRNAs are involved in multiple biological processes during the development of gastrointestinal tumours including proliferation, invasion and metastasis, radio‐ and chemoresistance, and inflammatory responses. Also, the clinical and pathological characteristics of the patient, such as staging and lymph node metastasis, are closely associated with the expression level of circRNAs. Further investigation of the function and the role of circRNAs in the development of gastrointestinal tumours will provide new directions for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, the Fourth Hospital of Changsha, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang J, Ghosh J, Mohamad SF, Zhang C, Huang X, Capitano ML, Gunawan AM, Cooper S, Guo B, Cai Q, Broxmeyer HE, Srour EF. CD166 Engagement Augments Mouse and Human Hematopoietic Progenitor Function via Activation of Stemness and Cell Cycle Pathways. Stem Cells 2019; 37:1319-1330. [PMID: 31260147 DOI: 10.1002/stem.3053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem (HSC) and progenitor (HPC) cells are regulated by interacting signals and cellular and noncellular elements of the hematopoietic niche. We previously showed that CD166 is a functional marker of murine and human HSC and of cellular components of the murine niche. Selection of murine CD166+ engrafting HSC enriched for marrow repopulating cells. Here, we demonstrate that CD166-CD166 homophilic interactions enhance generation of murine and human HPC in vitro and augment hematopoietic function of these cells. Interactions between cultured CD166+ Lineage- Sca-1+ c-Kit+ (LSK) cells and CD166+ osteoblasts (OBs) significantly enhanced the expansion of colony-forming units (CFUs). Interactions between CD166+ LSK cells and immobilized CD166 protein generated more CFU in short-term cultures than between these cells and bovine serum albumin (BSA) or in cultures initiated with CD166- LSK cells. Similar results were obtained when LSK cells from wildtype (WT) or CD166 knockout (KO) (CD166-/- ) mice were used with immobilized CD166. Human cord blood CD34+ cells expressing CD166 produced significantly higher numbers of CFUs following interaction with immobilized CD166 than their CD166- counterparts. These data demonstrate the positive effects of CD166 homophilic interactions involving CD166 on the surface of murine and human HPCs. Single-cell RNA-seq analysis of CD150+ CD48- (signaling lymphocyte activation molecule (SLAM)) LSK cells from WT and CD166-/- mice incubated with immobilized CD166 protein revealed that engagement of CD166 on these cells activates cytokine, growth factor and hormone signaling, epigenetic pathways, and other genes implicated in maintenance of stem cell pluripotency-related and mitochondria-related signaling pathways. These studies provide tangible evidence implicating CD166 engagement in the maintenance of stem/progenitor cell function. Stem Cells 2019;37:1319-1330.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, People's Republic of China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, AMMS, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safa F Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea M Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qingchun Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Cai YD, Zhang Q, Zhang YH, Chen L, Huang T. Identification of Genes Associated with Breast Cancer Metastasis to Bone on a Protein–Protein Interaction Network with a Shortest Path Algorithm. J Proteome Res 2017; 16:1027-1038. [DOI: 10.1021/acs.jproteome.6b00950] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu-Dong Cai
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Qing Zhang
- School
of Life Sciences, Shanghai University, Shanghai 200444 People’s Republic of China
| | - Yu-Hang Zhang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Lei Chen
- College
of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Tao Huang
- Institute
of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| |
Collapse
|
4
|
Liu R, Wei S, Chen J, Xu S. Mesenchymal stem cells in lung cancer tumor microenvironment: their biological properties, influence on tumor growth and therapeutic implications. Cancer Lett 2014; 353:145-52. [DOI: 10.1016/j.canlet.2014.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 12/24/2022]
|
5
|
Wang S, Ma S, Li X, Xue Z, Zhang X, Fan W, Nie Y, Wu K, Chen X, Cao F. Attenuation of lung cancer stem cell tumorigenesis and metastasis by cisplatin. Exp Lung Res 2014; 40:404-414. [PMID: 25153512 DOI: 10.3109/01902148.2014.938201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the effect of cisplatin on the growth and metastasis abilities of lung cancer stem cells (CSCs) via molecular imaging. MATERIALS AND METHODS The expression changes of lung CSCs cell marker in A549-Luc-C8 human non-small-cell lung cancer (NSCLC) cell line with or without cisplatin treatment were detected by flow cytometry. The tumorigenesis and metastasis abilities of A549-Luc-C8 cells were monitored both in vitro and in vivo, and the mechanism was assessed by gene sequencing. RESULTS About 1%-2% of CSCs were detected in A549-Luc-C8 cells and decreased CSCs percentage was observed after cisplatin treatment. Attenuated tumorigenesis and metastasis abilities of A549-Luc-C8 cells were found in cisplatin treated group. CONCLUSIONS Decreased percentage of CSCs in A549-Luc-C8 cells can be induced by cisplatin treatment, which may partly be attributed to the attenuated expression of growth factors.
Collapse
Affiliation(s)
- Shenxu Wang
- Cardiology Department, Chinese PLA General Hospital, Beijing, China.,Cardiology Department, No. 150 Hospital of PLA, LuoYang, Henan, China
| | - Sai Ma
- Cardiology Department, Xijing Hospital, Xi'an, Shaanxi, China
| | - Xiujuan Li
- Cardiology Department, Xijing Hospital, Xi'an, Shaanxi, China
| | - Zengfu Xue
- Digestive Disease Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaotian Zhang
- Cardiology Department, Xijing Hospital, Xi'an, Shaanxi, China
| | - Weiwei Fan
- Cardiology Department, Xijing Hospital, Xi'an, Shaanxi, China
| | - Yongzhan Nie
- Digestive Disease Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kaichun Wu
- Digestive Disease Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoyuan Chen
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Feng Cao
- Cardiology Department, Chinese PLA General Hospital, Beijing, China.,Cardiology Department, Xijing Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Wang X, Zheng F, Liu O, Zheng S, Liu Y, Wang Y, Tang Z, Zhong L. Epidermal growth factor can optimize a serum-free culture system for bone marrow stem cell proliferation in a miniature pig model. In Vitro Cell Dev Biol Anim 2013; 49:815-25. [PMID: 24002665 DOI: 10.1007/s11626-013-9665-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/08/2013] [Indexed: 01/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells have become an attractive cell source for periodontal ligament regeneration treatment because of their potential to engraft to several tissue types after injury. Most researchers have focused on the transplantation process, but few have paid attention to cell safety concerns and rapid proliferation before transplantation. Using serum-free medium to culture stem cells may be an effective method to avoid problems associated with exogenous serum and the addition of growth factors to promote cell proliferation. Here, we randomly divided our serum-free cultures and treated them with different levels of epidermal growth factor (EGF). We then evaluated changes in rates of cell adhesion, proliferation, apoptosis, and cell cycle ratio as well as their differentiation potential. The data showed that all of these parameters were significantly different when comparing serum-free cultures with and without 10 nM/L EGF (p < 0.05/0.01); however, cells with 10 nM/L EGF did not respond differently than cells grown in standard serum-containing media without EGF (p > 0.05). In summary, our results demonstrate that 10 nM/L EGF was the optimal dose for serum-free culture, which can replace traditional standard serum medium for in vitro expansion of miniature pig bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 110 Xiangya Road, Changsha, Hunan, 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li SW, Yang TC, Wan L, Lin YJ, Tsai FJ, Lai CC, Lin CW. Correlation between TGF-β1 expression and proteomic profiling induced by severe acute respiratory syndrome coronavirus papain-like protease. Proteomics 2012; 12:3193-205. [PMID: 22936401 PMCID: PMC7168038 DOI: 10.1002/pmic.201200225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 01/13/2023]
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS‐CoV) papain‐like protease (PLpro), a deubiquitinating enzyme, demonstrates inactivation of interferon (IFN) regulatory factor 3 and NF‐κB, reduction of IFN induction, and suppression of type I IFN signaling pathway. This study investigates cytokine expression and proteomic change induced by SARS‐CoV PLpro in human promonocyte cells. PLpro significantly increased TGF‐β1 mRNA expression (greater than fourfold) and protein production (greater than threefold). Proteomic analysis, Western blot, and quantitative real‐time PCR assays indicated PLpro upregulating TGF‐β1‐associated genes: HSP27, protein disulfide isomerase A3 precursor, glial fibrillary acidic protein, vimentin, retinal dehydrogenase 2, and glutathione transferase omega‐1. PLpro‐activated ubiquitin proteasome pathway via upregulation of ubiquitin‐conjugating enzyme E2–25k and proteasome subunit alpha type 5. Proteasome inhibitor MG‐132 significantly reduced expression of TGF‐β1 and vimentin. PLpro upregulated HSP27, linking with activation of p38 MAPK and ERK1/2 signaling. Treatment with SB203580 and U0126 reduced PLpro‐induced expression of TGF‐β1, vimentin, and type I collagen. Results point to SARS‐CoV PLpro triggering TGF‐β1 production via ubiquitin proteasome, p38 MAPK, and ERK1/2‐mediated signaling.
Collapse
Affiliation(s)
- Shih-Wen Li
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Fernández Vallone VB, Hofer EL, Choi H, Bordenave RH, Batagelj E, Feldman L, La Russa V, Caramutti D, Dimase F, Labovsky V, Martínez LM, Chasseing NA. Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clin Exp Metastasis 2012; 30:317-32. [PMID: 23053744 DOI: 10.1007/s10585-012-9539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
Abstract
Tumour cells can find in bone marrow (BM) a niche rich in growth factors and cytokines that promote their self-renewal, proliferation and survival. In turn, tumour cells affect the homeostasis of the BM and bone, as well as the balance among haematopoiesis, osteogenesis, osteoclastogenesis and bone-resorption. As a result, growth and survival factors normally sequestered in the bone matrix are released, favouring tumour development. Mesenchymal stem cells (MSCs) from BM can become tumour-associated fibroblasts, have immunosuppressive function, and facilitate metastasis by epithelial-to-mesenchymal transition. Moreover, MSCs generate osteoblasts and osteocytes and regulate osteoclastogenesis. Therefore, MSCs can play an important pro-tumorigenic role in the formation of a microenvironment that promotes BM and bone metastasis. In this study we showed that BM MSCs from untreated advanced breast and lung cancer patients, without bone metastasis, had low osteogenic and adipogenic differentiation capacity compared to that of healthy volunteers. In contrast, chondrogenic differentiation was increased. Moreover, MSCs from patients had lower expression of CD146. Finally, our data showed higher levels of Dkk-1 in peripheral blood plasma from patients compared with healthy volunteers. Because no patient had any bone disorder by the time of the study we propose that the primary tumour altered the plasticity of MSCs. As over 70 % of advanced breast cancer patients and 30-40 % of lung cancer patients will develop osteolytic bone metastasis for which there is no total cure, our findings could possibly be used as predictive tools indicating the first signs of future bone disease. In addition, as the MSCs present in the BM of these patients may not be able to regenerate bone after the tumour cells invasion into BM/bone, it is possible that they promote the cycle between tumour cell growth and bone destruction.
Collapse
Affiliation(s)
- Valeria B Fernández Vallone
- Experimental Biology and Medicine Institute, CONICET, 2490 Vuelta de Obligado, Ciudad Autónoma de Buenos Aires, 1428, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang J, Jia M, Zhu L, Yuan Z, Li P, Chang C, Luo J, Liu M, Shi T. Systematical detection of significant genes in microarray data by incorporating gene interaction relationship in biological systems. PLoS One 2010; 5:e13721. [PMID: 21060778 PMCID: PMC2966410 DOI: 10.1371/journal.pone.0013721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/05/2010] [Indexed: 02/02/2023] Open
Abstract
Many methods, including parametric, nonparametric, and Bayesian methods, have been used for detecting differentially expressed genes based on the assumption that biological systems are linear, which ignores the nonlinear characteristics of most biological systems. More importantly, those methods do not simultaneously consider means, variances, and high moments, resulting in relatively high false positive rate. To overcome the limitations, the SWang test is proposed to determine differentially expressed genes according to the equality of distributions between case and control. Our method not only latently incorporates functional relationships among genes to consider nonlinear biological system but also considers the mean, variance, skewness, and kurtosis of expression profiles simultaneously. To illustrate biological significance of high moments, we construct a nonlinear gene interaction model, demonstrating that skewness and kurtosis could contain useful information of function association among genes in microarrays. Simulations and real microarray results show that false positive rate of SWang is lower than currently popular methods (T-test, F-test, SAM, and Fold-change) with much higher statistical power. Additionally, SWang can uniquely detect significant genes in real microarray data with imperceptible differential expression but higher variety in kurtosis and skewness. Those identified genes were confirmed with previous published literature or RT-PCR experiments performed in our lab.
Collapse
Affiliation(s)
- Junwei Wang
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiwen Jia
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Zhu
- The College of Financial and Statistics, East China Normal University, Shanghai, China
| | - Zengjin Yuan
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Li
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Chang Chang
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences, The School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Hofer EL, Labovsky V, La Russa V, Vallone VF, Honegger AE, Belloc CG, Wen HC, Bordenave RH, Bullorsky EO, Feldman L, Chasseing NA. Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow. Stem Cells Dev 2010; 19:359-70. [PMID: 19388812 DOI: 10.1089/scd.2008.0375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We have shown that bone marrow (BM) from untreated advanced lung and breast cancer patients (LCP and BCP) have a reduced number of colony-forming unit fibroblasts (CFU-Fs) or mesenchymal stem cells (MSCs). Factors that regulate the proliferation and differentiation of CFU-F are produced by the patients' BM microenvironment. We have now examined whether conditioned media (CM) from patients' CFU-F-derived stromal cells also inhibits the colony-forming efficiency (CFE) of CFU-F in primary cultures from healthy volunteers (HV)-BM. Thus the number and proliferation potential of HV-CFU-F were also found to be decreased and similar to colony numbers and colony size of patients' CFU-F. Stromal cells from both of these types of colonies appeared relatively larger and lacked the characteristic spindle morphology typically seen in healthy stromal cells. We developed an arbitrary mesenchymal stromal cell maturational index by taking three measures consisting of stromal cell surface area, longitudinal and horizontal axis. All stromal indices derived from HV-CFU-F grown in patients' CM were similar to those from stromal elements derived from patients' CFU-F. These indices were markedly higher than stromal indices typical of HV-CFU-F cultured in healthy CM or standard medium [alpha-medium plus 20% heat-inactivated fetal bovine serum (FBS)]. Patients' CM had increased concentrations of the CFU-F inhibitor, GM-CSF, and low levels of bFGF and Dkk-1, strong promoters of self-renewal of MSCs, compared to the levels quantified in CM from HV-CFU-F. Moreover, the majority of patients' MSCs were unresponsive in standard medium and healthy CM to give CFU-F, indicating that the majority of mesenchymal stromal cells from patients' CFU-F are locked in maturational arrest. These results show that alterations of GM-CSF, bFGF, and Dkk-1 are associated with deficient cloning and maturation arrest of CFU-F. Defective autocrine and paracrine mechanisms may be involved in the BM microenvironments of LCP and BCP.
Collapse
Affiliation(s)
- Erica Leonor Hofer
- Agencia Nacional de Promoción Científica, Tecnológica y de Innovación Productiva, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thibault MM, Hoemann CD, Buschmann MD. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev 2007; 16:489-502. [PMID: 17610379 DOI: 10.1089/scd.2006.0100] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mesenchymal stem cell (MSC) is a critical element in tissue repair and regeneration. Its ability to differentiate into multiple connective tissue cell types and to self-renew has made it a prime candidate in regenerative medicine strategies. Currently, the environmental cues responsible for in situ recruitment and control of MSC distribution at repair sites are not entirely revealed and in particular the role of extracellular matrix (ECM) proteins as motogenic factors has not been studied. Here we have used a standardized transmembrane chemotaxis assay to assess the chemotactic and haptotactic potential of fibronectin, vitronectin, and collagen type 1 on MSCs from both rabbit and human origin. The use of both cell types was based in part on the widespread use of rabbit models for musculoskeletal-related tissue engineering and repair models and their unknown correspondence to human in terms of MSC migration. The optimized assay yielded a greatly increased chemotactic response toward known factors such as platelet-derived growth factor-BB (PDGF)-BB compared to previous studies. Our primary finding was that all three ECM proteins tested (fibronectin, vitronectin, and collagen I) induced significant motogenic activity, in both soluble and insoluble forms, for both rabbit and human MSCs. These results suggest that ECM proteins could play roles as significant as cytokines in the recruitment of pluripotential repair cells wound and tissue repair sites. Furthermore, designed ECM coatings of scaffolds or implants could provide a new tool to control both cell influx and outflux from the scaffold post-implantation. Finally, the similarity of motogenic behavior of both rabbit and human cells suggests the rabbit is a reliable model for assessing MSC recruitment in repair and regeneration strategies.
Collapse
Affiliation(s)
- Marc M Thibault
- Department of Chemical Engineering, Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | | | |
Collapse
|
12
|
Abstract
Ligands of the epidermal growth factor receptor (EGF-R), known to be important for supporting tissue development particularly in the gut and brain, have also been implicated in regulating postnatal somatic growth. Although optimal levels of both milk-borne and endogenous EGF-R ligands are important for supporting postnatal somatic growth through regulating gastrointestinal growth and maturation, supraphysiological levels of EGF-R ligands can cause retarded and disproportionate growth and alter body composition because they can increase growth of epithelial tissues but decrease masses of muscle, fat, and bone. Apart from their indirect roles in influencing growth, possibly via regulating levels of IGF-I and IGF binding proteins, EGF-R ligands can regulate bone growth and modeling directly because they can enhance proliferation but suppress maturation of growth plate chondrocytes (for building a calcified cartilage scaffold for bone deposition), stimulate proliferation but inhibit differentiation of osteoblasts (for depositing bone matrix), and promote formation and function of osteoclasts (for resorption of calcified cartilage or bone). In addition, EGF-like ligands, particularly amphiregulin, can be strongly regulated by PTH, an important regulatory factor in bone modeling and remodeling. Finally, EGF-R ligands can regulate bone homeostasis by regulating a pool of progenitor cells in the bone marrow through promoting proliferation but suppressing differentiation of bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Cory J Xian
- Department of Orthopaedic Surgery, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia.
| |
Collapse
|
13
|
Hu CY, He CF. Expression of transforming growth factor alpha and epidermal growth factor receptor in Barrett's esophagus and esophageal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2006; 14:879-883. [DOI: 10.11569/wcjd.v14.i9.879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transform-ing growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR) in Barrett's esophagus and esophageal adenocarcinoma.
METHODS: Immunohistochemistry (SABC assay) was used to detect the expression of TGF-α and EGFR protein in patients with reflux esophagitis (n = 13), Barrett's esophagus (n = 17), esophageal adenocarcinoma (n = 11) and normal esophageal mucosa (n = 30).
RESULTS: In the development of reflux esophagitis, Barrett's esophagus and esophageal adenocarcinoma, the expression of TGF-α and EGFR protein increased gradually and closely correlated with each other (r = 0.951, P < 0.01). TGF-α protein was mainly expressed in the cytoplasm. EGFR was expressed in the cellular membrane in the normal esophageal mucosa and reflux esophagitis, but strongly positively expression was also observed in the cytoplasm and nucleus of cells in Barrett's esophagus with dysplasia and esophageal adenocarcinoma.
CONCLUSION: TGF-α and EGFR expression increase and may play synergic roles in the development of Barrett's esophagus and esophageal adenocarcinoma.
Collapse
|