1
|
Paracrine CCL17 and CCL22 signaling regulates hematopoietic stem/progenitor cell migration and retention in mouse fetal liver. Biochem Biophys Res Commun 2020; 527:730-736. [PMID: 32439173 DOI: 10.1016/j.bbrc.2020.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 11/20/2022]
Abstract
Fetal liver (FL) is the major embryonic hematopoietic organ and a site where circulating hematopoietic stem/progenitor cells (HSPCs) reside. However, HSPC migration/retention mechanisms in FL remain unclear. A chemokine screen revealed that the CCR4 ligands CCL17 and CCL22 are highly expressed in mouse embryonic day (E) 12.5 FL. Flow cytometric analysis confirmed CCR4 expression in FL HSPCs. To identify sources of CCL17 and CCL22, we fractionated FL into various cell types and found that Ccl17 and Ccl22 were predominantly expressed in HPCs/matured HCs. In vitro cell migration analysis confirmed enhanced HSPC migration in the presence of HPCs/matured HCs. Furthermore, exo-utero injection of anti-CCR4 neutralizing antibody into pregnant mice significantly reduced the number of FL HSPCs in embryos. These data demonstrate a paracrine mechanism by which HSPC migration/retention is regulated by CCL17 and CCL22 secreted from HPCs or matured HCs in FL.
Collapse
|
2
|
Yumine A, Fraser ST, Sugiyama D. Regulation of the embryonic erythropoietic niche: a future perspective. Blood Res 2017; 52:10-17. [PMID: 28401096 PMCID: PMC5383581 DOI: 10.5045/br.2017.52.1.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The production of red blood cells, termed erythropoiesis, occurs in two waves in the developing mouse embryo: first primitive erythropoiesis followed by definitive erythropoiesis. In the mouse embryo, both primitive and definitive erythropoiesis originates in the extra-embryonic yolk sac. The definitive wave then migrates to the fetal liver, fetal spleen and fetal bone marrow as these organs form. The fetal liver serves as the major organ for hematopoietic cell expansion and erythroid maturation after mid-gestation. The erythropoietic niche, which expresses critical cytokines such as stem cell factor (SCF), thrombopoietin (TPO) and the insulin-like growth factors IGF1 and IGF2, supports hematopoietic expansion in the fetal liver. Previously, our group demonstrated that DLK1+ hepatoblasts support fetal liver hematopoiesis through erythropoietin and SCF release as well as extracellular matrix deposition. Loss of DLK1+ hepatoblasts in Map2k4−/− mouse embryos resulted in decreased numbers of hematopoietic cells in fetal liver. Genes encoding proteinases and peptidases were found to be highly expressed in DLK1+ hepatoblasts. Capitalizing on this knowledge, and working on the assumption that these proteinases and peptidases are generating small, potentially biologically active peptides, we assessed a range of peptides for their ability to support erythropoiesis in vitro. We identified KS-13 (PCT/JP2010/067011) as an erythropoietic peptide-a peptide which enhances the production of red blood cells from progenitor cells. Here, we discuss the elements regulating embryonic erythropoiesis with special attention to niche cells, and demonstrate how this knowledge can be applied in the identification of niche-derived peptides with potential therapeutic capability.
Collapse
Affiliation(s)
- Ayako Yumine
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Stuart T Fraser
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.; Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Tanaka Y, Inoue-Yokoo T, Kulkeaw K, Yanagi-Mizuochi C, Shirasawa S, Nakanishi Y, Sugiyama D. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis. PLoS One 2015; 10:e0138621. [PMID: 26389592 PMCID: PMC4577119 DOI: 10.1371/journal.pone.0138621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/31/2015] [Indexed: 01/30/2023] Open
Abstract
In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.
Collapse
Affiliation(s)
- Yuka Tanaka
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka Japan
| | - Tomoko Inoue-Yokoo
- Department of Research and Development of Next Generation Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Kasem Kulkeaw
- Department of Research and Development of Next Generation Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | | | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka Japan
| | - Yoichi Nakanishi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Daisuke Sugiyama
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
- Department of Research and Development of Next Generation Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
4
|
Sugiyama D, Sasaki T. Isolation of embryonic hematopoietic niche cells by flow cytometry and laser capture microdissection. Methods Mol Biol 2013; 1035:57-65. [PMID: 23959982 DOI: 10.1007/978-1-62703-508-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hematopoietic stem cells (HSCs) can differentiate into several types of hematopoietic cells, such as erythrocytes, megakaryocytes, lymphocytes, neutrophils, or macrophages, and also undergo self-renewal to sustain hematopoiesis throughout an organism's lifetime. HSCs emerge and expand during mouse embryogenesis. HSC regulation is governed by two types of activity: intrinsic activity programmed primarily by cell autonomous gene expression, and extrinsic factors, which originate from the so-called niche cells surrounding HSCs. Previously, we reported that endothelial niche cells regulate HSC generation at aorta-gonad-mesonephros region and placenta, and that hepatoblastic niche cells regulate HSC differentiation in mouse embryonic liver. In the course of those studies, we employed immunohistochemistry, flow cytometry, and the laser capture microdissection system to assess embryonic regulation of the mouse hematopoietic niche.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
5
|
TGF-beta-1 up-regulates extra-cellular matrix production in mouse hepatoblasts. Mech Dev 2012; 130:195-206. [PMID: 23041440 DOI: 10.1016/j.mod.2012.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 09/09/2012] [Accepted: 09/15/2012] [Indexed: 12/12/2022]
Abstract
Fetal liver is the major embryonic hematopoietic organ and is extrinsically colonized by circulating hematopoietic stem cells (HSCs). Integrin beta-1 expression on HSCs is crucial for colonization, suggesting that interaction of Integrin beta-1 with extra-cellular matrix (ECM) factors promotes HSC adherence to fetal liver. However, little is known about how ECM production is regulated in fetal liver. Here we used flow cytometry to sort fetal liver compartments and detected ECM gene and protein expression predominantly in sorted hepatoblasts. mRNA and protein analysis suggested that TGF-beta-1 expressed by hepatoblasts, sinusoid endothelial cells and hematopoietic cells, binds to the TGF-beta receptor type-2 expressed on hepatoblasts to stimulate ECM production. Intra-cardiac injection of TGF-inhibitors into mouse embryos dramatically decreased fetal liver ECM gene expression. Taken together, our observations suggest that hepatoblasts predominantly produce ECM factors under control of TGF-beta-1 in fetal liver.
Collapse
|
6
|
Mizuochi C, Fraser ST, Biasch K, Horio Y, Kikushige Y, Tani K, Akashi K, Tavian M, Sugiyama D. Intra-aortic clusters undergo endothelial to hematopoietic phenotypic transition during early embryogenesis. PLoS One 2012; 7:e35763. [PMID: 22558218 PMCID: PMC3338791 DOI: 10.1371/journal.pone.0035763] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/22/2012] [Indexed: 01/09/2023] Open
Abstract
Intra-aortic clusters (IACs) attach to floor of large arteries and are considered to have recently acquired hematopoietic stem cell (HSC)-potential in vertebrate early mid-gestation embryos. The formation and function of IACs is poorly understood. To address this issue, IACs were characterized by immunohistochemistry and flow cytometry in mouse embryos. Immunohistochemical analysis revealed that IACs simultaneously express the surface antigens CD31, CD34 and c-Kit. As embryos developed from 9.5 to 10.5 dpc, IACs up-regulate the hematopoietic markers CD41 and CD45 while down-regulating the endothelial surface antigen VE-cadherin/CD144, suggesting that IACs lose endothelial phenotype after 9.5 dpc. Analysis of the hematopoietic potential of IACs revealed a significant change in macrophage CFC activity from 9.5 to 10.5 dpc. To further characterize IACs, we isolated IACs based on CD45 expression. Correspondingly, the expression of hematopoietic transcription factors in the CD45(neg) fraction of IACs was significantly up-regulated. These results suggest that the transition from endothelial to hematopoietic phenotype of IACs occurs after 9.5 dpc.
Collapse
Affiliation(s)
- Chiyo Mizuochi
- Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Stuart T. Fraser
- Laboratory of Blood Cell Development, Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Yuka Horio
- Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenzaburo Tani
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Daisuke Sugiyama
- Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
7
|
Sugiyama D, Inoue-Yokoo T, Fraser ST, Kulkeaw K, Mizuochi C, Horio Y. Embryonic regulation of the mouse hematopoietic niche. ScientificWorldJournal 2011; 11:1770-80. [PMID: 22125435 PMCID: PMC3201691 DOI: 10.1100/2011/598097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/16/2011] [Indexed: 01/25/2023] Open
Abstract
Hematopoietic stem cells (HSCs) can differentiate into several types of hematopoietic cells (HCs) (such as erythrocytes, megakaryocytes, lymphocytes, neutrophils, or macrophages) and also undergo self-renewal to sustain hematopoiesis throughout an organism's lifetime. HSCs are currently used clinically as transplantation therapy in regenerative medicine and are typically obtained from healthy donors or cord blood. However, problems remain in HSC transplantation, such as shortage of cells, donor risks, rejection, and graft-versus-host disease (GVHD). Thus, increased understanding of HSC regulation should enable us to improve HSC therapy and develop novel regenerative medicine techniques. HSC regulation is governed by two types of activity: intrinsic regulation, programmed primarily by cell autonomous gene expression, and extrinsic factors, which originate from so-called "niche cells" surrounding HSCs. Here, we focus on the latter and discuss HSC regulation with special emphasis on the role played by niche cells.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Sasaki T, Mizuochi C, Horio Y, Nakao K, Akashi K, Sugiyama D. Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development 2010; 137:3941-52. [PMID: 20980401 DOI: 10.1242/dev.051359] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) emerge from and expand in the mouse placenta at mid-gestation. To determine their compartment of origin and define extrinsic signals governing their commitment to this lineage, we identified hematopoietic cell (HC) clusters in mouse placenta, defined as cells expressing the embryonic HSC markers CD31, CD34 and Kit, by immunohistochemistry. HC clusters were first observed in the placenta at 9.5 days post coitum (dpc). To determine their origin, we tagged the allantoic region with CM-DiI at 8.25 dpc, prior to placenta formation, and cultured embryos in a whole embryo culture (WEC) system. CM-DiI-positive HC clusters were observed 42 hours later. To determine how clusters are extrinsically regulated, we isolated niche cells using laser capture micro-dissection and assayed them for expression of genes encoding hematopoietic cytokines. Among a panel of candidates assayed, only stem cell factor (SCF) was expressed in niche cells. To define niche cells, endothelial and mesenchymal cells were sorted by flow cytometry from dissociated placenta and hematopoietic cytokine gene expression was investigated. The endothelial cell compartment predominantly expressed SCF mRNA and protein. To determine whether SCF/Kit signaling regulates placental HC cluster proliferation, we injected anti-Kit neutralizing antibody into 10.25 dpc embryos and assayed cultured embryos for expression of hematopoietic transcription factors. Runx1, Myb and Gata2 were downregulated in the placental HC cluster fraction relative to controls. These observations demonstrate that placental HC clusters originate from the allantois and are regulated by endothelial niche cells through SCF/Kit signaling.
Collapse
Affiliation(s)
- Tatsuya Sasaki
- Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan. [corrected]
| | | | | | | | | | | |
Collapse
|
9
|
Gering M, Patient R. Notch signalling and haematopoietic stem cell formation during embryogenesis. J Cell Physiol 2009; 222:11-6. [PMID: 19725072 DOI: 10.1002/jcp.21905] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signalling pathway is repeatedly employed during embryonic development and adult homeostasis of a variety of tissues. In particular, its frequent involvement in the regulation of stem and progenitor cell maintenance and proliferation, as well as its role in binary fate decisions in cells that are destined to differentiate, is remarkable. Here, we review its role in the development of haematopoietic stem cells during vertebrate embryogenesis and put it into the context of Notch's functions in arterial specification, angiogenic vessel sprouting and vessel maintenance. We further discuss interactions with other signalling cascades, and pinpoint open questions and some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Martin Gering
- Institute of Genetics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
10
|
Kulkeaw K, Mizuochi C, Horio Y, Osumi N, Tsuji K, Sugiyama D. Application of whole mouse embryo culture system on stem cell research. Stem Cell Rev Rep 2009; 5:175-80. [PMID: 19521805 DOI: 10.1007/s12015-009-9064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
The normal development of mouse embryo in vivo could be maintained in vitro up to 72 h in the presence of rat serum which is continuously supplied with the appropriate concentration of O(2) and CO(2). There are several applications of the whole mouse embryo culture model for study of cellular dynamics in hematopoiesis and its interaction with vasculogenesis. In this protocol, we have described details of manipulation techniques in combination with the whole embryo culture and also some advance techniques applied to the mouse embryo such as intra-cardiac inoculation of acetylated low density lipoprotein for cell-specific labeling and engraftment of donor yolk-sac from different genotype/phenotype mouse embryo onto the yolk-sac of host mouse for study of the dynamic distribution of hematopoietic cell.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Faculty of Medical Sciences, Department of Hematopoietic Stem Cells, SSP Stem Cell Unit, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ma F, Wang D, Hanada S, Ebihara Y, Kawasaki H, Zaike Y, Heike T, Nakahata T, Tsuji K. Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells. Int J Hematol 2007; 85:371-9. [PMID: 17562610 DOI: 10.1532/ijh97.06203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We propose a novel method for the efficient production of hematopoietic progenitors from human embryonic stem cells (hESC) via coculture with murine fetal liver-derived stromal cells, in which embryonic hematopoiesis dramatically expands at midgestation. We generated various hematopoietic progenitors in coculture, and this hematopoietic activity was concentrated in cobblestone-like cells derived from differentiated hESC. The cobblestone-like cells mostly expressed CD34 and retained an endothelial cell potential. They also contained hematopoietic colony-forming cells, especially erythroid and multilineage colony-forming cells at high frequency. The multipotential hematopoietic progenitors abundant among the cobblestone-like cells produced almost all types of mature blood cells, including adult-type alpha-globin-expressing erythrocytes and tryptase/chymase double-positive mast cells. These progenitors showed neither the immature properties of ESC nor the potential to differentiate into endoderm and ectoderm at a clonal level. The coculture system developed for hESC can provide a novel source of hematopoietic and blood cells for applications in cellular therapy and drug screening.
Collapse
Affiliation(s)
- Feng Ma
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sugiyama D, Ogawa M, Nakao K, Osumi N, Nishikawa S, Nishikawa SI, Arai KI, Nakahata T, Tsuji K. B cell potential can be obtained from pre-circulatory yolk sac, but with low frequency. Dev Biol 2007; 301:53-61. [PMID: 17092496 DOI: 10.1016/j.ydbio.2006.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/16/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
The ontogenic source of definitive hematopoietic system has been identified in non-mammalian vertebrates such as birds and amphibians by orthotopic embryo grafting, but remains unclear for mammals because of technical difficulties. Here, we successfully generated mouse chimeras by grafting yolk sac (YS) on YS of the host embryos before establishing circulation between YS and embryo proper and cultured the whole embryo for 66 h. Donor YS were isolated from C57BL/6 Ly-5.1 and EGFP-transgenic mouse embryos, and recipient embryos from C57BL/6 Ly-5.2 mouse. Almost one-half of the grafts in YS-YS chimeras survived and had obvious blood flow; graft-derived cells comprised 12.7+/-0.9% of the blood cells in the circulation. These graft-derived blood cells consisted mainly of erythroid cells, some myeloid cells and a few blastic cells. In addition, CD19(+) B cells were generated from the graft-derived cells isolated from aorta-gonad-mesonephros (AGM) regions of the YS-YS chimeras; however, the frequency of the YS-derived B cell was low (1.0+/-0.6%) when co-cultured with OP9 stromal cells. These results demonstrate that B cell potential exists in YS before the circulation. Although the major source for B cell is intra-embryonic AGM region, YS may contribute to definitive lymphopoiesis in vivo in mice.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The Univeristy of Tokyo, 4-6-1 Shirokanedai, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sugiyama D, Tsuji K. Definitive Hematopoiesis from Endothelial Cells in the Mouse Embryo; A Simple Guide. Trends Cardiovasc Med 2006; 16:45-9. [PMID: 16473761 DOI: 10.1016/j.tcm.2005.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/14/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
Circulation is composed of two interactive systems, the cardiovascular and the hematopoietic, which affect each other. Recently, endothelial progenitor cells/angioblasts have been identified in the circulation of the adult mouse and human. Furthermore, some hematopoietic cells (HCs) have been shown to contribute to angiogenesis, suggesting that HCs can transdifferentiate into endothelial cells (ECs). Although these concepts in adult are still controversial, understanding the mechanisms of the relationship between ECs and HCs would benefit the clinical application for cardiovascular and hematologic disorders. Both ECs and HCs are considered to be derived from a common germ layer, the mesoderm, and have more intimate relationship in embryo than in adult. Here, we describe the relationship between ECs and HCs with special attention to the hemogenic ECs in the mouse embryo.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- Department of Biochemistry, Dartmouth Medical School, HB7200 313 Vail Building, Hanover, New Hampshire, USA
| | | |
Collapse
|