1
|
Guest PC. Identification of Neural Stem Cell Biomarkers by Isobaric Tagging for Relative and Absolute Quantitation (iTRAQ) Mass Spectrometry. Methods Mol Biol 2018; 1735:467-476. [PMID: 29380337 DOI: 10.1007/978-1-4939-7614-0_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This chapter describes a proteomic analysis of neural progenitor cells using isobaric tagging for relative and absolute quantitation (iTRAQ) mass spectrometry. A detailed procedure is described for the isolation, proliferation, and differentiation of these cells, including a comparative iTRAQ mass spectrometry analysis of the precursor and differentiated states. In total, there were changes in the levels of 55 proteins, many of which are not resolved easily by other proteomic methods. Therefore, this method should be useful for the identification of important regulatory molecules in the study of other precursor cells involved in neuronal or metabolic regulation in nutritional programming diseases.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
2
|
Combining Patient-Reprogrammed Neural Cells and Proteomics as a Model to Study Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:279-287. [DOI: 10.1007/978-3-319-52479-5_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:183-191. [PMID: 28353235 DOI: 10.1007/978-3-319-52479-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.
Collapse
|
4
|
Mechanisms of Plasticity, Remodeling and Recovery. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis 2011; 17:289-304. [DOI: 10.1007/s10495-011-0679-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Herberth M, Koethe D, Cheng TMK, Krzyszton ND, Schoeffmann S, Guest PC, Rahmoune H, Harris LW, Kranaster L, Leweke FM, Bahn S. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol Psychiatry 2011; 16:848-59. [PMID: 20585325 DOI: 10.1038/mp.2010.71] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Little is known about the biological mechanisms underpinning the pathology of schizophrenia. We have analysed the proteome of stimulated and unstimulated peripheral blood mononuclear cells (PBMCs) from schizophrenia patients and controls as a potential model of altered cellular signaling using liquid-chromatography mass spectrometry proteomic profiling. PBMCs from patients and controls were stimulated for 72 h in vitro using staphylococcal enterotoxin B. In total, 18 differentially expressed proteins between first-onset, antipsychotic-naive patients and controls in the unstimulated and stimulated conditions were identified. Remarkably, eight of these proteins were associated with the glycolytic pathway and patient-control differences were more prominent in stimulated compared with unstimulated PBMCs. None of these proteins were altered in chronically ill antipsychotic-treated patients. Non-linear multivariate statistical analysis showed that small subsets of these proteins could be used as a signal for distinguishing first-onset patients from controls with high precision. Functional analysis of PBMCs did not reveal any difference in the glycolytic rate between patients and controls despite increased levels of lactate and the glucose transporter-1, and decreased levels of the insulin receptor in patients. In addition, subjects showed increased serum levels of insulin, consistent with the idea that some schizophrenia patients are insulin resistant. These results show that schizophrenia patients respond differently to PBMC activation and this is manifested at disease onset and may be modulated by antipsychotic treatment. The glycolytic protein signature associated with this effect could therefore be of diagnostic and prognostic value. Moreover, these results highlight the importance of using cells for functional discovery and show that it may not be sufficient to measure protein expression levels in static states.
Collapse
Affiliation(s)
- M Herberth
- Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chopp M, Zhang ZG. Enhancing Brain Reorganization and Recovery of Function after Stroke. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Shoemaker LD, Orozco NM, Geschwind DH, Whitelegge JP, Faull KF, Kornblum HI. Identification of differentially expressed proteins in murine embryonic and postnatal cortical neural progenitors. PLoS One 2010; 5:e9121. [PMID: 20161753 PMCID: PMC2817745 DOI: 10.1371/journal.pone.0009121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/18/2010] [Indexed: 12/11/2022] Open
Abstract
Background The central nervous system (CNS) develops from a heterogeneous pool of neural stem and progenitor cells (NSPC), the underlying differences among which are poorly understood. The study of NSPC would be greatly facilitated by the identification of additional proteins that mediate their function and that would distinguish amongst different progenitor populations. Methodology/Principal Findings To identify membrane and membrane-associated proteins expressed by NSPC, we used a proteomics approach to profile NSPC cultured as neurospheres (NS) isolated from the murine cortex during a period of neurogenesis (embryonic day 11.5, E11.5), as compared to NSPC isolated at a peak of gliogenesis (postnatal day 1, P0) and to differentiated E11.5 NS. 54 proteins were identified with high expression in E11.5 NS, including the TrkC receptor, several heterotrimeric G proteins, and the Neogenin receptor. 24 proteins were identified with similar expression in E11.5 and P0 NS over differentiated E11.5 NS, and 13 proteins were identified with high expression specifically in P0 NS compared to E11.5 NS. To illustrate the potential relevance of these identified proteins to neural stem cell biology, the function of Neogenin was further studied. Using Fluorescence Activated Cell Sorting (FACS) analysis, expression of Neogenin was associated with a self-renewing population present in both E11.5 and adult subventricular zone (SVZ) NS but not in P0 NS. E11.5 NS expressed a putative Neogenin ligand, RGMa, and underwent apoptosis when exposed to a ligand-blocking antibody. Conclusions/Significance There are fundamental differences between the continuously self-renewing and more limited progenitors of the developing cortex. We identified a subset of differentially expressed proteins that serve not only as a set of functionally important proteins, but as a useful set of markers for the subsequent analysis of NSPC. Neogenin is associated with the continuously self-renewing and neurogenic cells present in E11.5 cortical and adult SVZ NS, and the Neogenin/RGMa receptor/ligand pair may regulate cell survival during development.
Collapse
Affiliation(s)
- Lorelei D. Shoemaker
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas M. Orozco
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel H. Geschwind
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Harley I. Kornblum
- Neuropsychiatric Institute - Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|
10
|
Ly L, Wasinger VC. Mass and charge selective protein fractionation for the differential analysis of T-cell and CD34+ stem cell proteins from cord blood. J Proteomics 2010; 73:571-8. [DOI: 10.1016/j.jprot.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022]
|
11
|
Cheng TMK, Lu YE, Guest PC, Rahmoune H, Harris LW, Wang L, Ma D, Stelzhammer V, Umrania Y, Wayland MT, Lió P, Bahn S. Identification of targeted analyte clusters for studies of schizophrenia. Mol Cell Proteomics 2009; 9:510-22. [PMID: 20007949 DOI: 10.1074/mcp.m900372-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The search for biomarkers to diagnose psychiatric disorders such as schizophrenia has been underway for decades. Many molecular profiling studies in this field have focused on identifying individual marker signals that show significant differences in expression between patients and the normal population. However, signals for multiple analyte combinations that exhibit patterned behaviors have been less exploited. Here, we present a novel approach for identifying biomarkers of schizophrenia using expression of serum analytes from first onset, drug-naïve patients and normal controls. The strength of patterned signals was amplified by analyzing data in reproducing kernel spaces. This resulted in the identification of small sets of analytes referred to as targeted clusters that have discriminative power specifically for schizophrenia in both human and rat models. These clusters were associated with specific molecular signaling pathways and less strongly related to other neuropsychiatric disorders such as major depressive disorder and bipolar disorder. These results shed new light concerning how complex neuropsychiatric diseases behave at the pathway level and demonstrate the power of this approach in identification of disease-specific biomarkers and potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Tammy M K Cheng
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 2009; 10:635-46. [DOI: 10.1038/nrn2701] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Ma D, Chan MK, Lockstone HE, Pietsch SR, Jones DNC, Cilia J, Hill MD, Robbins MJ, Benzel IM, Umrania Y, Guest PC, Levin Y, Maycox PR, Bahn S. Antipsychotic Treatment Alters Protein Expression Associated with Presynaptic Function and Nervous System Development in Rat Frontal Cortex. J Proteome Res 2009; 8:3284-97. [DOI: 10.1021/pr800983p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Ma
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Man K. Chan
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Helen E. Lockstone
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Sandra R. Pietsch
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Declan N. C. Jones
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Jackie Cilia
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Mark D. Hill
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Melanie J. Robbins
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Isabel M. Benzel
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Yagnesh Umrania
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Paul C. Guest
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Yishai Levin
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Peter R. Maycox
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| | - Sabine Bahn
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, U.K., and Psychiatry CEDD, New Frontiers Science Park, GlaxoSmithKline, Third Avenue, Harlow, CM19 5AW, U.K
| |
Collapse
|
14
|
|
15
|
Skalnikova H, Vodicka P, Gadher SJ, Kovarova H. Proteomics of neural stem cells. Expert Rev Proteomics 2008; 5:175-86. [PMID: 18466050 DOI: 10.1586/14789450.5.2.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.
Collapse
Affiliation(s)
- Helena Skalnikova
- Institute of Animal Physiology & Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Greenfield JP, Ayuso-Sacido A, Schwartz TH, Pannullo S, Souweidane M, Stieg PE, Boockvar JA. Use of human neural tissue for the generation of progenitors. Neurosurgery 2008; 62:21-37; discussion 27-30. [PMID: 18300889 DOI: 10.1227/01.neu.0000311059.87873.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence suggests that a better understanding of normal human brain stem cells and tumor stem cells (TSCs) will have profound implications for treating central nervous system disease during the next decade. Neurosurgeons routinely resect excess surgical tissue containing either normal brain stem cells or TSCs. These cells are immediately available for expansion and use in basic biological assays, animal implantation, and comparative analysis studies. Although normal stem cells have much slower kinetics of expansion than TSCs, they are easily expandable and can be frozen for future use in stem cell banks. This nearly limitless resource holds promise for understanding the basic biology of normal brain stem cells and TSCs, which will likely direct the next major shift in therapeutics for brain tumors, brain and spinal cord injury, and neurodegenerative disease. This report reviews the progress that has been made in harvesting and expanding both normal and tumor-derived stem cells and emphasizes the integral role neurosurgeons will play in moving the neural stem cell field forward.
Collapse
Affiliation(s)
- Jeffrey P Greenfield
- Laboratory for Translational Stem Cell Research, Weill Cornell Brain Tumor Center, Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|