1
|
Song LJ, Sui RX, Wang J, Miao Q, He Y, Yin JJ, An J, Ding ZB, Han QX, Wang Q, Yu JZ, Xiao BG, Ma CG. Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson's disease model. Int J Neurosci 2024; 134:274-291. [PMID: 36037147 DOI: 10.1080/00207454.2022.2100778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
Abstract
Background: The etiology of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, is multifactorial but not fully unknown. Until now, no drug has been proven to have neuroprotective or neuroregenerative effects in patients with PD. Objectives: To observe the therapeutic potential of Bilobalide (BB), a constituent of ginkgo biloba, in MPTP-induced PD model, and explore its possible mechanisms of action. Material and Methods: Mice were randomly divided into three groups: healthy group, MPTP group and MPTP + BB group. PD-related phenotypes were induced by intraperitoneal injection of MPTP into male C57BL/6 mice, and BB (40 mg/kg/day) was intraperitoneally given for 7 consecutive days at the end of modeling. The injection of saline was set up as the control in a similar manner. Results: BB induced M2 polarization of microglia, accompanied by inhibition of neuroinflammation in the brain. Simultaneously, BB promoted the expression of BDNF in astrocytes and neurons, and expression of GDNF in neurons. Most interestingly, BB enhanced the formation of GFAP+ astrocytes expressing nestin, Brn2 and Ki67, as well as the transformation of GFAP+ astrocytes expressing tyrosine hydroxylase around subventricular zone, providing experimental evidence that BB could promote the conversion of astrocytes into TH+ dopamine neurons in vivo and in vitro. Conclusions: These results suggest the natural product BB may utilize multiple pathways to modify degenerative process of TH+ neurons, revealing an exciting opportunity for novel neuroprotective therapeutics. However, its multi-target and important mechanisms need to be further explored.
Collapse
Affiliation(s)
- Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
2
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
3
|
Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation. Sci Rep 2020; 10:3284. [PMID: 32094412 PMCID: PMC7040006 DOI: 10.1038/s41598-020-60065-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed by RA-induction revealed only minor proportions of differentially abundant proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of USSC.
Collapse
|
4
|
Farzamfar S, Ehterami A, Salehi M, Vaeez A, Atashi A, Sahrapeyma H. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration. J Mol Neurosci 2018; 67:48-61. [DOI: 10.1007/s12031-018-1209-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/25/2022]
|
5
|
Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Veterinary Medicine. Stem Cells Int 2018; 2018:8329174. [PMID: 30123294 PMCID: PMC6079340 DOI: 10.1155/2018/8329174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022] Open
Abstract
Stem cell therapy has prompted the expansion of veterinary medicine both experimentally and clinically, with the potential to contribute to contemporary treatment strategies for various diseases and conditions for which limited or no therapeutic options are presently available. Although the application of various types of stem cells, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AT-MSCs), and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), has promising potential to improve the health of different species, it is crucial that the benefits and drawbacks are completely evaluated before use. Umbilical cord blood (UCB) is a rich source of stem cells; nonetheless, isolation of mesenchymal stem cells (MSCs) from UCB presents technical challenges. Although MSCs have been isolated from UCB of diverse species such as human, equine, sheep, goat, and canine, there are inherent limitations of using UCB from these species for the expansion of MSCs. In this review, we investigated canine UCB (cUCB) and compared it with UCB from other species by reviewing recent articles published from February 2003 to June 2017 to gain an understanding of the limitations of cUCB in the acquisition of MSCs and to determine other suitable sources for the isolation of MSCs from canine. Our review indicates that cUCB is not an ideal source of MSCs because of insufficient volume and ethical issues. However, canine reproductive organs discarded during neutering may help broaden our understanding of effective isolation of MSCs. We recommend exploring canine reproductive and adipose tissue rather than UCB to fulfill the current need in veterinary medicine for the well-designed and ethically approved source of MSCs.
Collapse
|
6
|
Rafieemehr H, Kheirandish M, Soleimani M. Neural Differentiation of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-29066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol Cell Proteomics 2015; 14:2630-43. [PMID: 26183719 DOI: 10.1074/mcp.m115.049312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.
Collapse
Affiliation(s)
- Jessica Schira
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Heiner Falkenberg
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marion Hendricks
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Daniel M Waldera-Lupa
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gesine Kögler
- ¶Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Helmut E Meyer
- ‖Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund, Germany
| | - Hans Werner Müller
- §Molecular Neurobiology Laboratory, Department of Neurology, Heinrich Heine University Medical Centre Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- From the ‡Molecular Proteomics Laboratory (MPL), Institute for Molecular Medicine, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany; **Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Banik A, Prabhakar S, Kalra J, Anand A. Effect of human umbilical cord blood derived lineage negative stem cells transplanted in amyloid-β induced cognitive impaired mice. Behav Brain Res 2015; 291:46-59. [PMID: 25989508 DOI: 10.1016/j.bbr.2015.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular deposition of insoluble amyloid-β (Aβ) plaques and intracellular tangles made up of phosphorylated tau in brain. Several therapeutic approaches are being carried out in animal AD models for testing their safety and efficacy in altering disease pathology and behavioral deficits. Very few studies have examined the effect of human umbilical cord blood (hUCB) derived stem cells in degenerative disease models despite growing number of cord blood banks worldwide. Here we have examined the therapeutic efficacy of hUCB derived lineage negative (Lin -ve) stem cells in alleviating behavioral and neuropathological deficits in a mouse model of cognitive impairment induced by bilateral intrahippocampal injection of Aβ-42. Lin -ve cells were transplanted at two doses (50,000 and 100,000) at the site of injury and examined at 10 and 60 days post transplantation for rescue of memory deficits. These cells were found to ameliorate cognitive impairment in 50,000-60 days and 100,000-10 days groups whereas, 50,000-10 days and 100,000-60 days groups could not exert any significant improvement. Further, mice showing spatial memory improvement were mediated by up-regulation of BDNF, CREB and also by concomitant down regulation of Fas-L in their brain. The transplanted cells were found in the host tissue and survived up to 60 days without expressing markers of neuronal differentiation or reducing Aβ burden in mouse brain. We suggest that these undifferentiated cells could exert neuroprotective effects either through inhibiting apoptosis and/or trophic effects in the brain.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudesh Prabhakar
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasvinder Kalra
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumour Biol 2015; 36:7765-74. [PMID: 25941115 DOI: 10.1007/s13277-015-3519-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.
Collapse
|
10
|
Sun JM, Kurtzberg J. Cord blood for brain injury. Cytotherapy 2015; 17:775-785. [PMID: 25800775 DOI: 10.1016/j.jcyt.2015.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Recovery from neurological injuries is typically incomplete and often results in significant and permanent disabilities. Currently, most available therapies are limited to supportive or palliative measures, aimed at managing the symptoms of the condition. Because restorative therapies targeting the underlying cause of most neurological diseases do not exist, cell therapies targeting anti-inflammatory, neuroprotective and regenerative potential hold great promise. Cord blood (CB) cells can induce repair through mechanisms that involve trophic or cell-based paracrine effects or cellular integration and differentiation. Both may be operative in emerging CB therapies for neurologic conditions, and there are numerous potential applications of CB-based regenerative therapies in neurological diseases, including genetic diseases of childhood, ischemic events such as stroke and neurodegenerative diseases of adulthood. CB appears to hold promise as an effective therapy for patients with brain injuries. In this Review, we describe the state of science and clinical applications of CB therapy for brain injury.
Collapse
Affiliation(s)
- Jessica M Sun
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA.
| | - Joanne Kurtzberg
- Pediatric Blood and Marrow Transplant Program, Duke University, Durham, North Carolina, USA; The Robertston Clinical and Translational Cell Therapy Program, Duke University, Durham, North Carolina, USA; The Carolinas Cord Blood Bank, Durham, North Carolina, USA
| |
Collapse
|
11
|
Khanghahi AM, Zeynali B, Akhlaghpoor A, Tafreshi AP, Krieglstein K. Activation of TGFβ1 signaling enhances early dopaminergic differentiation in unrestricted somatic stem cells. Neurosci Lett 2014; 583:60-4. [DOI: 10.1016/j.neulet.2014.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 01/09/2023]
|
12
|
Ding Z, Burghoff S, Buchheiser A, Kögler G, Schrader J. Survival, integration, and differentiation of unrestricted somatic stem cells in the heart. Cell Transplant 2014; 22:15-27. [PMID: 23594819 DOI: 10.3727/096368912x640466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unrestricted somatic stem cells (USSCs) derived from human umbilical cord blood represent an attractive cell source to reconstitute the damaged heart. We have analyzed the cardiomyogenic potential and investigated the fate of USSCs after transplantation into rat heart in vivo. USSCs demonstrated cardiomyogenic differentiation properties characterized by the spontaneously beating activity and the robust expression of cardiac α-actinin and troponin T (cTnT) at protein and mRNA level after cocultivation with neonatal rat cardiomyocytes. To study the fate in vivo, eGFP⁺ USSCs were injected transcoronarily into immunosuppressed rats via a catheter-based technique. Nearly 80% USSCs were retained within the myocardium without altering cardiac hemodynamics. After 7 days, 20% of the transplanted cells survived in the host myocardium and showed elongated morphology with weak expression of cardiac-specific markers, while some eGFP⁺ USSCs were found to integrate into the vascular wall. After 21 days, only a small fraction of USSCs were found in the myocardium (0.13%); however, the remaining cells clearly exhibited a sarcomeric structure similar to mature cardiomyocytes. Identical results were also obtained in nude rats. In addition, we found some cells stained positively for activated caspase 3 paralleled by the massive infiltration of CD11b⁺ cells into the myocardium. In summary, USSCs can differentiate into beating cardiomyocytes by cocultivation in vitro. After coronary transplantation in vivo, however, long-term survival of differentiated USSCs was rather low despite a high initial fraction of trapped cells.
Collapse
Affiliation(s)
- Zhaoping Ding
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
13
|
Liao Y, Itoh M, Yang A, Zhu H, Roberts S, Highet AM, Latshaw S, Mitchell K, Van De Ven C, Christiano A, Cairo MS. Human Cord Blood-Derived Unrestricted Somatic Stem Cells Promote Wound Healing and have Therapeutic Potential for Patients with Recessive Dystrophic Epidermolysis Bullosa. Cell Transplant 2014; 23:303-17. [DOI: 10.3727/096368913x663569] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human umbilical cord blood (CB)-derived unrestricted somatic stem cells (USSCs) have previously been demonstrated to have a broad differentiation potential and regenerative beneficial effects when administered in animal models of multiple degenerative diseases. Here we demonstrated that USSCs could be induced to express genes that hallmark keratinocyte differentiation. We also demonstrated that USSCs express type VII collagen (C7), a protein that is absent or defective in patients with an inherited skin disease, recessive dystrophic epidermolysis bullosa (RDEB). In mice with full-thickness excisional wounds, a single intradermal injection of USSCs at a 1-cm distance to the wound edge resulted in significantly accelerated wound healing. USSC-treated wounds displayed a higher density of CD31+ cells, and the wounds healed with a significant increase in skin appendages. These beneficial effects were demonstrated without apparent differentiation of the injected USSCs into keratinocytes or endothelial cells. In vivo bioluminescent imaging (BLI) revealed specific migration of USSCs modified with a luciferase reporter gene, from a distant intradermal injection site to the wound, as well as following systemic injection of USSCs. These data suggest that CB-derived USSCs could significantly contribute to wound repair and be potentially used in cell therapy for patients with RDEB.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Munenari Itoh
- Department of Dermatology, Jikei University School of Medicine, Tokyo, Japan
| | - Albert Yang
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Samantha Roberts
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Shaun Latshaw
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Kelly Mitchell
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Angela Christiano
- Department of Dermatology, Columbia University Medical Center, New York, NY, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pathology, New York Medical College, Valhalla, NY, USA
- Immunology and Microbiology, New York Medical College, Valhalla, NY, USA
- Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
14
|
Gheisari Y, Ahmadbeigi N, Aghaee-Bakhtiari SH, Nassiri SM, Amanpour S, Azadmanesh K, Hajarizadeh A, Mobarra Z, Soleimani M. Human unrestricted somatic stem cell administration fails to protect nude mice from cisplatin-induced acute kidney injury. Nephron Clin Pract 2013; 123:11-21. [PMID: 23921434 DOI: 10.1159/000353233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kidney failure is a debilitating disorder with limited treatment options. The kidney-protective effects of stem cells have been vastly investigated and promising results have been achieved with various sources of stem cells. However, in spite of beneficial effects on other disease models, the renoprotective potential of human cord blood-derived unrestricted somatic stem cells (USSC) has not been examined so far. METHODS In the present study, acute kidney failure was induced in female nude mice and the effect of USSC transplantation on kidney function and structure was assessed. Furthermore, the expression of some cytokine genes was examined by real-time PCR. Homing of the transplanted cells into kidneys was assessed by flow cytometry, immunohistochemistry, and real-time PCR. RESULTS USSC-conditioned medium did not attenuate the in vitro nephrotoxic effects of cisplatin. Transplantation of USSC to nude mice did not protect kidney function and was associated with worsened kidney structural damage. USSC transplantation was also associated with a decline in the renal expression of VEGF-A gene. In spite of these effects, the transplanted cells could not be detected in the kidneys by any of the exploited methods and they were mainly entrapped in the lungs. CONCLUSION These data indicate that USSC are not suitable for cell therapy in the setting of acute kidney injury. Also, this study shows that these stem cells are able to affect damaged kidneys even if they are not homed there.
Collapse
Affiliation(s)
- Yousof Gheisari
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 2013; 40:4429-37. [DOI: 10.1007/s11033-013-2533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
|
16
|
Inhibition of GSK-3β enhances neural differentiation in unrestricted somatic stem cells. Cell Biol Int 2013; 36:967-72. [PMID: 22775567 DOI: 10.1042/cbi20110541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GSK-3β is a key molecule in several signalling pathways, including the Wnt/β-catenin signalling pathway. There is increasing evidence suggesting Wnt/β-catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β-catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β-catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6-bromoindirubin-3'-oxime), a specific GSK-3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β-tubulin III). Moreover, the expression of pGSK-3β and stabilized β-catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK-3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β-catenin signalling pathway towards neural fate.
Collapse
|
17
|
Gahremanpour A, Vela D, Zheng Y, Silva GV, Fodor W, Cardoso CO, Baimbridge F, Fernandes MR, Buja LM, Perin EC. Xenotransplantation of human unrestricted somatic stem cells in a pig model of acute myocardial infarction. Xenotransplantation 2013; 20:110-22. [DOI: 10.1111/xen.12026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Amir Gahremanpour
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | - Deborah Vela
- Cardiovascular Pathology Research Department; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX; USA
| | - Yi Zheng
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | - Guilherme V. Silva
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | - William Fodor
- Cell Therapy Group; Vancouver; British Columbia; Canada
| | - Cristiano O. Cardoso
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | - Fred Baimbridge
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | - Marlos R. Fernandes
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| | | | - Emerson C. Perin
- Stem Cell Center; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston; TX
| |
Collapse
|
18
|
Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 2013; 14:111. [PMID: 23418963 PMCID: PMC3637629 DOI: 10.1186/1471-2164-14-111] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs are a population of short non-coding RNAs with widespread negative regulatory impact on mRNA translation. Unrestricted somatic stem cells (USSC) are a rare population in human cord blood that can be induced into cells representative of all three germinal layers. Here we analyzed the functional impact of miRNAs on the osteogenic differentiation in USSC. RESULTS Gene expression profiling identified 20 microRNAs that were consistently upregulated during osteogenic differentiation of two different USSC cell lines (SA5/73 and SA8/25). Bioinformatic target gene prediction indicated that among these microRNAs, miR-10a, -22, -26a, -26b, and -29b recognize transcripts that encode a set of proteins inhibiting osteogenesis. We subsequently verified osteo-inhibitory CDK6, CTNNBIP1, HDAC4, and TOB1 and osteo-promoting SMAD1 as targets of these microRNAs. In Western blot analyses demonstrated that endogenous levels of CDK6 and HDAC4 were downregulated during osteogenic differentiation of USSC and reduced following ectopic expression of miR-26a/b and miR-29b. In contrast, endogenous expression of SMAD1, targeted by miR-26a/b, was unaltered during osteogenic differentiation of USSC or following ectopic expression of miR-26a/b. Functional overexpression analyses using microRNA mimics revealed that miR-26a/b, as well as miR-29b strongly accelerated osteogenic differentiation of USSC as assessed by Alizarin-Red staining and calcium-release assays. CONCLUSIONS miR-26a/b and miR-29b are upregulated during osteogenic differentiation of USSC and share target genes inhibiting osteogenesis. Furthermore, these microRNAs accelerate osteogenic differentiation, likely mediated by osteo-inhibitory proteins such as CDK6 and HDAC4.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics (ITZ), Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Potential application of cord blood-derived stromal cells in cellular therapy and regenerative medicine. JOURNAL OF BLOOD TRANSFUSION 2012; 2012:365182. [PMID: 24066257 PMCID: PMC3771124 DOI: 10.1155/2012/365182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
Neonatal stromal cells from umbilical cord blood (CB) are promising alternatives to bone marrow- (BM-) derived multipotent stromal cells (MSCs). In comparison to BM-MSC, the less mature CB-derived stromal cells have been described as a cell population with higher differentiation and proliferation potential that might be of potential interest for clinical application in regenerative medicine. Recently, it has become clear that cord blood contains different stromal cell populations, and as of today, a clear distinction between unrestricted somatic stromal cells (USSCs) and CB-MSC has been established. This classification is based on the expression of DLK-1, HOX, and CD146, as well as functional examination of the adipogenic differentiation potential and the capacity to support haematopoiesis in vitro and in vivo. However, a marker enabling a prospective isolation of the rare cell populations directly out of cord blood is yet to be found. Further analysis may help to reveal even more subpopulations with different properties, which could be useful for the directed application of these cells in preclinical models.
Collapse
|
20
|
Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant 2012; 48:890-900. [PMID: 22964590 DOI: 10.1038/bmt.2012.169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 12/28/2022]
Abstract
Brain injury resulting from perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of acute mortality in infants and chronic neurologic disability in surviving children. Recent multicenter clinical trials demonstrated the effectiveness of hypothermia initiated within the first 6 postnatal hours to reduce the risk of death or major neurological disabilities among neonates with HIE. However, in these trials, approximately 40% of cooled infants died or survived with significant impairments. Therefore, adjunct therapies are required to improve the outcome in neonates with HIE. Cord blood (CB) is a rich source of stem cells. Administration of human CB cells in animal models of HIE has generally resulted in improved outcomes and multiple mechanisms have been suggested including anti-inflammation, release of neurotrophic factors and stimulation of endogenous neurogenesis. Investigators at Duke are conducting studies of autologous CB infusion in neonates with HIE and in children with cerebral palsy. These pilot studies indicate no added risk from the regimens used, but results of ongoing placebo-controlled trials are needed to assess efficacy. Meanwhile, further investigations are warranted to determine the best strategies, that is, timing, dosing, route of delivery, choice of stem cells and ex vivo modulations, to attain long-term benefits of CB stem cell therapy.
Collapse
|
21
|
Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2012; 71:464-73. [PMID: 22430382 DOI: 10.1038/pr.2011.59] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances in the treatment of neonatal hypoxic-ischemic encephalopathy (HIE) using therapeutic hypothermia, at least 30% of the cooled infants will die or have moderate/severe neurological disability. Umbilical cord blood cells (UCBCs), which are readily available at birth, have been shown to reduce sensorimotor and/or cognitive impairments in several models of brain damage, representing a promising option for the treatment of neurological diseases. In this review, we discuss recent preclinical studies that assessed the effects of UCBC transplantation in the Rice-Vannucci animal model of HIE. We also review the possible cell types and mechanisms involved in the therapeutic effect of UCBC transplantation, including neuroprotection, immunomodulation, and stimulation of neural plasticity and regeneration. In addition, we discuss how neuroimaging methods, such as bioluminescence imaging, nuclear-medicine imaging, or magnetic resonance imaging, could be used to evaluate the biodistribution of UCBCs in both preclinical and clinical studies.
Collapse
|
22
|
Li X, Li H, Bi J, Chen Y, Jain S, Zhao Y. Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun 2012; 419:110-6. [DOI: 10.1016/j.bbrc.2012.01.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
23
|
The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci Lett 2011; 505:171-5. [DOI: 10.1016/j.neulet.2011.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/29/2011] [Accepted: 10/04/2011] [Indexed: 01/04/2023]
|
24
|
Roobrouck VD, Vanuytsel K, Verfaillie CM. Concise review: culture mediated changes in fate and/or potency of stem cells. Stem Cells 2011; 29:583-9. [PMID: 21305670 DOI: 10.1002/stem.603] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although Gurdon demonstrated already in 1958 that the nucleus of intestinal epithelial cells could be reprogrammed to give rise to adult frogs, the field of cellular reprogramming has only recently come of age with the description by Takahashi and Yamanaka in 2006, which defined transcription factors can reprogram fibroblasts to an embryonic stem cell-like fate. With the mounting interest in the use of human pluripotent stem cells and culture-expanded somatic stem/progenitor cells, such as mesenchymal stem cells, increasing attention has been given to the effect of changes in the in vitro microenvironment on the fate of stem cells. These studies have demonstrated that changes in culture conditions may change the potency of pluripotent stem cells or reprogram adult stem/progenitor cells to endow them with a broader differentiation potential. The mechanisms underlying these fate and potency changes by ex vivo culture should be further investigated and considered when designing clinical therapies with stem/progenitor cells.
Collapse
Affiliation(s)
- Valerie D Roobrouck
- Interdepartmental Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
25
|
Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, Wagner DC, Kamprad M, Stahl T. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant 2011; 21:723-37. [PMID: 21929866 DOI: 10.3727/096368911x586783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Experimental transplantation of human umbilical cord blood (hUCB) mononuclear cells (MNCs) in rodent stroke models revealed the therapeutic potential of these cells. However, effective cells within the heterogeneous MNC population and their modes of action are still under discussion. MNCs and MNC fractions enriched (CD34(+)) or depleted (CD34(-)) for CD34-expressing stem/progenitor cells were isolated from hUCB. Cells were transplanted intravenously following middle cerebral artery occlusion in spontaneously hypertensive rats and directly or indirectly cocultivated with hippocampal slices previously subjected to oxygen and glucose deprivation. Application of saline solution or a human T-cell line served as controls. In vivo, MNCs, CD34(+) and CD34(-) cells reduced neurofunctional deficits and diminished lesion volume as determined by magnetic resonance imaging. MNCs were superior to other fractions. However, human cells could not be identified in brain tissue 29 days after stroke induction. Following direct application on postischemic hippocampal slices, MNCs reduced neural damage throughout a 3-day observation period. CD34(+) cells provided transient protection for 2 days. The CD34(-) fraction, in contrast to in vivo results, failed to reduce neural damage. Direct cocultivation of MNCs was superior to indirect cocultivation of equal cell numbers. Indirect application of up to 10-fold MNC concentrations enhanced neuroprotection to a level comparable to direct cocultivation. After direct application, MNCs migrated into the slices. Flow cytometric analysis of migrated cells revealed that the CD34(+) cells within MNCs were preferably attracted by damaged hippocampal tissue. Our study suggests that MNCs provide the most prominent neuroprotective effect, with CD34(+) cells seeming to be particularly involved in the protective action of MNCs. CD34(+) cells preferentially home to neural tissue in vitro, but are not superior concerning the overall effect, implying that there is another, still undiscovered, protective cell population. Furthermore, MNCs did not survive in the ischemic brain for longer periods without immunosuppression.
Collapse
Affiliation(s)
- Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang C, Zhou L, Gao X, Chen B, Tu J, Sun H, Liu X, He J, Liu J, Yuan Q. Neuroprotective effects of bone marrow stem cells overexpressing glial cell line-derived neurotrophic factor on rats with intracerebral hemorrhage and neurons exposed to hypoxia/reoxygenation. Neurosurgery 2011; 68:691-704. [PMID: 21311297 DOI: 10.1227/neu.0b013e3182098a8a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) represents at least 15% of all strokes in the Western population and a considerably higher proportion at 50% to 60% in the Oriental population. OBJECTIVE To investigate whether administration of bone marrow stem cells (BMSCs) overexpressing glial cell line-derived neurotrophic factor (GDNF) provides more efficient neuroprotection for rats with ICH and neurons exposed to hypoxia/reoxygenation. METHODS Primary rat BMSCs were transfected with rat GDNF gene using virus vector (GDNF/BMSCs) and blank virus plasmid (BVP/BMSCs). Primary rat cortical neurons of rats were exposed to hypoxia and then reoxygenated with GDNF/BMSCs (GDNF/BMSCs group) or BVP/BMSCs (BMSCs group) treatment for 12 hours and 1, 2, 3, and 5 days. Hoechst 33258 staining was used to evaluate apoptosis. GDNF/BMSCs, BVP/BMSCs, and saline (GDNF/BMSCs, BMSCs, and control groups) were injected into the right striatum 3 days after rat ICH induced by injecting collagenase. Modified neurological severity scores and hematoxylin and eosin staining were performed to evaluate neurological function and lesion volume at 1 and 2 weeks after transplantation. Immunostaining was used to observe differentiation of grafted cells (neurofilament-200 for neurons, glial fibrillary acidic protein for astrocytes). The GDNF level and apoptosis were evaluated by Western blotting and terminal deoxynucleotidyl transferase dUTP nick-end labeling, respectively. RESULTS The GDNF/BMSCs group had significantly lowered apoptosis compared with the BMSCs group at the given time. The GDNF/BMSCs group had significantly improved functional deficits and reduced lesion volume compared with the BMSCs group. Stable GDNF expression in the GDNF/BMSCs group was detected at the given time in the host brain. The neurofilament-positive grafted cells in the GDNF/BMSCs group were more numerous than in the BMSCs group. The GDNF/BMSCs group had significantly decreased apoptotic cells compared with the BMSCs group. CONCLUSION These results suggest that GDNF/BMSCs provide better neuroprotection for rats with ICH and neurons exposed to hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Chaoxian Yang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, and Department of Plastic and Reconstructive Surgery, 9th People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta 2011; 32 Suppl 4:S316-9. [PMID: 21575988 DOI: 10.1016/j.placenta.2011.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
Abstract
Using the principal of tissue engineering, several groups have demonstrated the feasibility of creating heart valves, blood vessels, and myocardial structures using autologous cells and biodegradable scaffold materials. In the current cardiovascular clinical scenario, the main medical need for a tissue engineering solution is in the field of pediatric applications treating congenital heart disease. In these young patients, the introduction of autologous viable and growing replacement structures, such as tissue engineered heart valves and vessels, would substantially reduce today's severe therapeutic limitations, which are mainly due to the need for repeat reoperations to adapt the current artificial prostheses to somatic growth. Based on high resolution imaging techniques, an increasing number of defects are diagnosed already prior to birth around week 20. For interventions, cells should be obtained already during pregnancy to provide tissue engineered implants either at birth or even prenatally. In our recent studies human fetal mesenchymal stem cells were isolated from routinely sampled prenatal amniotic fluid or chorionic villus specimens and expanded in vitro. Fresh and cryopreserved samples were used. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable scaffolds and conditioned in a bioreactor. Leaflets were endothelialized with either amniotic fluid- or umbilical cord blood-derived endothelial progenitor cells and conditioned. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Genotyping confirmed their fetal origin, and fresh versus cryopreserved cells showed comparable myofibroblast-like phenotypes. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed morphologically cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. These in vitro studies demonstrated the principal feasibility of using various human cell types isolated from fetal sources for cardiovascular tissue engineering. Umbilical cord blood-, amniotic fluid- and chorionic villi-derived cells have shown promising potential for the clinical realization of this congenital tissue engineering approach. Based on these results, future research must aim at further investigation as well as preclinical evaluation of prenatally harvested stem- or progenitor cells with regard to their potential for clinical use.
Collapse
Affiliation(s)
- B Weber
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | | | | |
Collapse
|
28
|
c-Jun/AP-1 transcription factor regulates laminin-1-induced neurite outgrowth in human bone marrow mesenchymal stem cells: Role of multiple signaling pathways. FEBS Lett 2011; 585:1915-22. [DOI: 10.1016/j.febslet.2011.04.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/05/2011] [Accepted: 04/25/2011] [Indexed: 01/06/2023]
|
29
|
Iwaniuk KM, Schira J, Weinhold S, Jung M, Adjaye J, Müller HW, Wernet P, Trompeter HI. Network-like impact of MicroRNAs on neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood. Stem Cells Dev 2011; 20:1383-94. [PMID: 21067317 DOI: 10.1089/scd.2010.0341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Unrestricted somatic stem cells (USSCs) represent an intrinsically multipotent CD45-negative fetal population from human cord blood. They show differentiation into neuronal cells of a dopaminergic phenotype, which express neuronal markers such as synaptophysin, neuronal-specific nuclear protein, and neurofilament and release the neurotransmitter dopamine accompanied by expression of dopaminergic key factors tyrosine hydroxylase and Nurr1 (NR4A2). MicroRNA expression analysis highlighted their importance in neural development but their specific functions remain poorly understood. Here, downregulation of a set of 18 microRNAs during neuronal lineage differentiation of unrestricted somatic stem cells, including members of the miR-17-92 family and additional microRNAs such as miR-130a, -138, -218, and -335 as well as their target genes, is described. In silico target gene predictions for this microRNA group uncovered a large set of proteins involved in neuronal differentiation and having a strong impact on differentiation-related pathways such as axon guidance and TGFβ, WNT, and MAPK signaling. Experimental target validations confirmed approximately 35% of predictions tested and revealed a group of proteins with specific impact on neuronal differentiation and function including neurobeachin, neurogenic differentiation 1, cysteine-rich motor neuron protein 1, neuropentraxin 1, and others. These proteins are combined targets for several subgroups from the set of 18 downregulated microRNAs. This finding was further supported by the observed upregulation of a significant amount of predicted and validated target genes based on Illumina Beadstudio microarray data. Confirming the functional relationship of a limited panel of microRNAs and predicted target proteins reveals a clear network-like impact of the group of 18 downregulated microRNAs on proteins involved in neuronal development and function.
Collapse
Affiliation(s)
- Katharina M Iwaniuk
- Medical Faculty, University Düsseldorf, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kluth SM, Buchheiser A, Houben AP, Geyh S, Krenz T, Radke TF, Wiek C, Hanenberg H, Reinecke P, Wernet P, Kögler G. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 2011; 19:1471-83. [PMID: 20331358 DOI: 10.1089/scd.2010.0070] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In addition to hematopoietic stem cells, cord blood (CB) also contains different nonhematopoietic CD45-, CD34- adherent cell populations: cord blood mesenchymal stromal cells (CB MSC) that behave almost like MSC from bone marrow (BM MSC) and unrestricted somatic stem cells (USSC) that differentiate into cells of all 3 germ layers. Distinguishing between these populations is difficult due to overlapping features such as the immunophenotype or the osteogenic and chondrogenic differentiation pathway. Functional differences in the differentiation potential suggest different developmental stages or different cell populations. Here we demonstrate that the expression of genes and the differentiation toward the adipogenic lineage can discriminate between these 2 populations. USSC, including clonal-derived cells lacking adipogenic differentiation, strongly expressed δ-like 1/preadipocyte factor 1 (DLK-1/PREF1) correlating with high proliferative potential, while CB MSC were characterized by a strong differentiation toward adipocytes correlating with a weak or negative DLK-1/PREF1 expression. Constitutive overexpression of DLK-1/PREF1 in CB MSC resulted in a reduced adipogenic differentiation, whereas silencing of DLK-1 in USSC resulted in adipogenic differentiation.
Collapse
Affiliation(s)
- Simone Maria Kluth
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011; 6:e16138. [PMID: 21283765 PMCID: PMC3024412 DOI: 10.1371/journal.pone.0016138] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Methodology/Principal Findings Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G1/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G2/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Conclusions/Significance Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G1/S transition.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Hassane Abbad
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Katharina M. Iwaniuk
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Markus Hafner
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Neil Renwick
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Jessica Schira
- Molecular Neurobiology Laboratory, Medical Faculty, Department of Neurology, University Düsseldorf, Düsseldorf, Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Medical Faculty, Department of Neurology, University Düsseldorf, Düsseldorf, Germany
| | - Peter Wernet
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
32
|
Raicevic G, Najar M, Stamatopoulos B, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cell Immunol 2011; 270:207-16. [DOI: 10.1016/j.cellimm.2011.05.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/29/2011] [Accepted: 05/13/2011] [Indexed: 01/14/2023]
|
33
|
Lentiviral labeling reveals three germ layer differentiation potential of a single unrestricted somatic stem cell from human cord blood. Exp Hematol 2010; 38:1099-104. [PMID: 20869422 DOI: 10.1016/j.exphem.2010.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Generation and expression of unrestricted somatic stem cells (USSC) from human cord blood as well as their in vitro functional characterization at the clonal level. MATERIALS AND METHODS USSC generation was initiated from fresh cord blood followed by lentiviral transfection and clone generation via limiting dilution. Individual clones were analyzed for lentiviral genomic integration patterns by ligation-mediated polymerase chain reaction. In vitro differentiation of clonal USSC was performed into mesodermal, endodermal, and ectodermal lineages according to our published protocols. Respective osteogenic, hepatic, and neuronal lineage-specification was documented by immunohistochemistry and tissue-specific protein expression was analyzed by Western blotting. MicroRNA expression analysis was achieved using the TaqMan microRNA Megaplex array. RESULTS Lentivirally labeled USSC cultures were successfully subjected to limiting dilution cloning. One clone containing a single lentiviral integration site was identified (clone 4) and used for further differentiation experiments. Ligation-mediated polymerase chain reaction results from mesodermally, endodermally, and ectodermally differentiated USSC clone 4 consistently showed only the primary single lentiviral integration site. Lineage-specific differentiation experiments were confirmed by morphology and cell-fate-specific monoclonal antibodies in immunocytochemistry. MicroRNA expression profiles did not reveal dramatic differences between clonal and nonclonal USSC. CONCLUSIONS The proof of the clonal existence of USSC is important for the assessment of biological properties unique for these unrestricted human stem cell candidates. As clones they can be subjected to advanced methods that enable defining of the multilayer nature of regulatory mechanisms through single-cell analysis.
Collapse
|
34
|
Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, Gilissen C, Jansen BJH, Adema GJ, Kögler G, le Sage C, Agami R, van der Reijden BA, Jansen JH. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 2010; 19:877-85. [PMID: 19795981 DOI: 10.1089/scd.2009.0112] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unrestricted somatic stem cells (USSCs) have been recently identified in human umbilical cord blood and have been shown to differentiate into lineages representing all 3 germ layers. To characterize microRNAs that may regulate osteogenic differentiation of USSCs, we carried out expression analysis for 157 microRNAs using quantitative RT-PCR before and after osteogenic induction (t = 0.5, 24, 72, 168, 216 h). Three microRNAs, hsa-miR-135b, hsa-miR-224, and hsa-miR-31, were consistently down-regulated during osteogenesis of USSC line 1. Hsa-miR-135b was shown to be the most profoundly down-regulated in osteogenesis of USSC line 1 and further confirmed to be down-regulated in the osteogenic differentiation of 2 additional USSC lines. Function of hsa-miR-135b in osteogenesis of USSCs was examined by retroviral overexpression, which resulted in an evident decreased mineralization, indicating that hsa-miR-135b down-regulation is functionally important for full osteogenic differentiation of USSCs. MicroRNAs have been shown to regulate negatively expression of their target gene(s). To identify putative targets of hsa-miR-135b, we performed cDNA microarray expression analysis. We selected in total 10 transcripts that were down-regulated (>or=2-fold) in response to hsa-miR-135b overexpression at day 7 and day 9 of osteogenic differentiation. The function of most of these targets in human osteogenesis is unknown and requires further investigation. Markedly, quantitative RT-PCR data showed decreased expression of osteogenic markers IBSP and Osterix, both known to be involved in bone mineralization, in osteogenesis of USSCs that overexpress hsa-miR-135b. This finding suggests that hsa-miR-135b may control osteoblastic differentiation of USSCs by regulating expression of bone-related genes.
Collapse
Affiliation(s)
- Aneta M Schaap-Oziemlak
- Central Hematology Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jansen BJH, Gilissen C, Roelofs H, Schaap-Oziemlak A, Veltman JA, Raymakers RAP, Jansen JH, Kögler G, Figdor CG, Torensma R, Adema GJ. Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev 2010; 19:481-90. [PMID: 19788395 DOI: 10.1089/scd.2009.0288] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cells are widely studied to enable their use in tissue repair. However, differences in function and differentiation potential exist between distinct stem cell populations. Whether those differences are due to donor variation, cell culture, or intrinsic properties remains elusive. Therefore, we compared 3 cell lines isolated from 3 different niches using the Affymetrix Exon Array platform: the cord blood-derived neonatal unrestricted somatic stem cell (USSC), adult bone marrow-derived mesenchymal stem cells (BM-MSC), and adult adipose tissue-derived stem cells (AdAS). While donor variation was minimal, large differences between stem cells of different origin were detected. BM-MSC and AdAS, outwardly similar, are more closely related to each other than to USSC. Interestingly, USSC expressed genes involved in the cell cycle and in neurogenesis, consistent with their reported neuronal differentiation capacity. The BM-MSC signature indicates that they are primed toward developmental processes of tissues and organs derived from the mesoderm and endoderm. Remarkably, AdAS appear to be highly enriched in immune-related genes. Together, the data suggest that the different mesenchymal stem cell types have distinct gene expression profiles, reflecting their origin and differentiation potential. Furthermore, these differences indicate a demand for effective differentiation protocols tailored to each stem cell type.
Collapse
Affiliation(s)
- Bastiaan J H Jansen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aktas M, Buchheiser A, Houben A, Reimann V, Radke T, Jeltsch K, Maier P, Zeller WJ, Kogler G. Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood. Cytotherapy 2010; 12:338-48. [PMID: 20370349 DOI: 10.3109/14653241003695034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS The discovery of unrestricted somatic stem cells (USSC), a non-hematopoietic stem cell population, brought cord blood (CB) to the attention of regenerative medicine for defining more protocols for non-hematopoietic indications. We demonstrate that a reliable and reproducible method for good manufacturing practice (GMP)-conforming generation of USSC is possible that fulfils safety requirements as well as criteria for clinical applications, such as adherence of strict regulations on cell isolation and expansion. METHODS In order to maintain GMP conformity, the automated cell processing system Sepax (Biosafe) was implemented for mononucleated cell (MNC) separation from fresh CB. After USSC generation, clinical-scale expansion was achieved by multi-layered CellSTACKs (Costar/Corning). Infectious disease markers, pyrogen and endotoxin levels, immunophenotype, potency, genetic stability and sterility of the cell product were evaluated. RESULTS The MNC isolation and cell cultivation methods used led to safe and reproducible GMP-conforming USSC production while maintaining somatic stem cell character. CONCLUSIONS Together with implemented in-process controls guaranteeing contamination-free products with adult stem cell character, USSC produced as suggested here may serve as a universal allogeneic stem cell source for future cell treatment and clinical settings.
Collapse
Affiliation(s)
- Murat Aktas
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liedtke S, Buchheiser A, Bosch J, Bosse F, Kruse F, Zhao X, Santourlidis S, Kögler G. The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 2010; 5:40-50. [DOI: 10.1016/j.scr.2010.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/03/2010] [Accepted: 03/18/2010] [Indexed: 12/20/2022] Open
|
38
|
Waclawczyk S, Buchheiser A, Flögel U, Radke TF, Kögler G. In vitro differentiation of unrestricted somatic stem cells into functional hepatic-like cells displaying a hepatocyte-like glucose metabolism. J Cell Physiol 2010; 225:545-54. [DOI: 10.1002/jcp.22237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Tsagias N, Kouzi-Koliakos K, Koliakos I, Kostidou E, Karagiannis V, Daniilidis A, Koliakos G. Addition of adipose-derived stem cells in cord blood cultures stimulates their pluripotent differentiation. Transplant Proc 2010; 41:4340-4. [PMID: 20005395 DOI: 10.1016/j.transproceed.2009.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/11/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Adipose tissue is recognized as an important source of postnatal mesenchymal stem cells for generative medicine applications. Moreover, cord blood stem cells have been shown to contain pluripotent stem cells called unrestricted somatic stem cells (USSCs). However, this population is rare and cannot be generated from every cord blood sample. In this study, we have presented a new method of co-culture of adipose-derived stem cells (ADPCs) and cord blood stem cells that results in pluripotent differentiation. MATERIALS AND METHODS ADPCs were obtained from a piece of adipose tissue after treatment with 0.075% collagenase, which was subsequently inactivated with DMEM/10% FBS. The cellular pellet of centrifugation was plated at 5-7 x 10(6) cells/mL in T25 culture flasks in a low-glycose DMEM with 30% FCS. Cord blood stem cells were obtained by centrifugation following double-processing in the presence of 2% HES 200/0.5 and plated at 5-7 x 10(6) cells/mL in the same medium. To investigate the crucial role of ADPCs in pluripotent cord blood differentiation, we added a ADPCS as (1 x 10(4) cells/mL) to the cord blood cultures and analyzed the contribution of ADPCs using a microscope as well as with flow cytometry. RESULTS After only 3 days, adherent cells (USSC colonies) of fibroblastic morphology were detected in all co-cultured samples, whereas this was observed later or not at all in the non-co-cultured samples. The greater density of colonies in the co-coltured samples was another point. Hematopoietic CD45 cells were no longer detected after the first passage. Pluripotent stem cells were obtained from all co-cultured samples that contained stem cells positive for CD29, CD44, CD49e, CD90, CD105, CD51 Stro, and C-kit antibodies but negative for CD34, CD45, CD133, and glycophorin A. CONCLUSION Addition of ADPCs was crucial to generate pluripotent-derived stem cells from cord blood samples. This double culture may be a useful tool for a universal allogeneic stem cell source for tissue repair or regeneration.
Collapse
Affiliation(s)
- N Tsagias
- 3rd University Obstetrics and Gynaecology Clinic, Ippokration General Hospital, Medical School, Aristotle University Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | | | | | | | |
Collapse
|
40
|
Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One 2010; 5:e9398. [PMID: 20195526 PMCID: PMC2827567 DOI: 10.1371/journal.pone.0009398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 02/04/2010] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSChUCBs) are capable of expressing tyrosine hydroxylase (TH) and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSChUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP), 3-isobutyl-1-methylxanthine (IBMX) and retinoic acid (RA) are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.
Collapse
|
41
|
Greco SJ, Rameshwar P. Recent advances and novel approaches in deriving neurons from stem cells. ACTA ACUST UNITED AC 2010; 6:324-8. [DOI: 10.1039/b914822c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Zech NH, Broer N, Ribitsch I, Zech MH, Broer KH, Ertan K, Preisegger KH. The rationale behind collecting umbilical cord blood. J Turk Ger Gynecol Assoc 2010; 11:99-101. [PMID: 24591908 DOI: 10.5152/jtgga.2010.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/31/2009] [Indexed: 11/22/2022] Open
Abstract
Umbilical cord blood (UCB) is an increasingly important and rich source of stem cells. These cells can be used for the treatment of many diseases, including cancers and immune and genetic disorders. For patients for whom no suitable related donor is available, this source of hematopoietic stem cells offers substantial advantages, notably the relative ease of procurement, the absence of risk to the donor, the small likelihood of transmitting clinically important infections, the low risk of severe graft-versus-host disease (GVHD) and the rapid availability of placental blood for transplantation centers. Even though almost 80 diseases are treatable with cord blood stem cells, 97 percent of cord blood is still disposed of after birth and lost for patients in need! To improve availability of stem cells to a broader community, efforts should be undertaken to collect cord blood and expectant parents should be properly informed of their options with regard to cord blood banking.
Collapse
Affiliation(s)
- Nicolas H Zech
- Ivf Centers Prof. Zech, Bregenz, Austria and Department For Obstetrics and Gynecology, Unit of Gynecological Endocrinology and Reproductive Medicine, University of Graz, Austria
| | - Nikolas Broer
- Yale University School of Medicine, Usa, and Center For Reproductive Medicine, Cologne, Germany
| | - Iris Ribitsch
- Vivocell Biosolutions Gmbh, Graz, Austria and Langenfeld/Düsseldorf, Germany
| | - Mathias H Zech
- Ivf Centers Prof. Zech, Bregenz, Austria and Department For Obstetrics and Gynecology, Unit of Gynecological Endocrinology and Reproductive Medicine, University of Graz, Austria
| | - Karl-Heinz Broer
- Vivocell Biosolutions Gmbh, Graz, Austria and Langenfeld/Düsseldorf, Germany
| | - Kubilay Ertan
- Klinikum Leverkusen, Department of Obstretics and Gynecology, Leverkusen, Germany
| | | |
Collapse
|
43
|
Reimann V, Creutzig U, Kögler G. Stem cells derived from cord blood in transplantation and regenerative medicine. DEUTSCHES ARZTEBLATT INTERNATIONAL 2009; 106:831-6. [PMID: 20049094 PMCID: PMC2801068 DOI: 10.3238/arztebl.2009.0831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Physicians of any specialty may be the first persons to whom prospective parents turn for information about the acquisition and storage of stem cells derived from cord blood. Stem cells can potentially be used to treat many diseases, yet they are not a panacea. This article provides an overview of their current and possible future applications. METHODS Original papers were retrieved by a selective search of the literature, and the Internet sites and advertising brochures of private stem cell banks were also examined. RESULTS Allogeneic hematopoietic stem cells derived from umbilical cord blood (obtained from healthy donors, rather than from the patient to be treated) have been in routine use worldwide for more than ten years in the treatment of hematopoietic diseases. Experiments in cell culture and in animal models suggest that these cells might be of therapeutic use in regenerative medicine, but also show that this potential can be realized only if the cells are not cryopreserved. There is as yet no routine clinical application of autologous hematopoietic stem cells from cord blood (self-donation of blood), even though cord blood has been stored in private banks for more than ten years. CONCLUSIONS Autologous stem cells from cord blood have poor prospects for use in regenerative medicine, because they have to be cryopreserved until use. Physicians should tell prospective parents that they have no reason to feel guilty if they choose not to store cord blood in a private bank.
Collapse
Affiliation(s)
- Verena Reimann
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| | | | - Gesine Kögler
- Institut für Transplantationsdiagnostik und Zelltherapeutika, José Carreras Stammzellbank, Universitätsklinikum Düsseldorf
| |
Collapse
|
44
|
Kögler G, Critser P, Trapp T, Yoder M. Future of cord blood for non-oncology uses. Bone Marrow Transplant 2009; 44:683-97. [PMID: 19802027 DOI: 10.1038/bmt.2009.287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For the last 5 years cord blood (CB) has been under intense experimental investigation in in vitro differentiation models and in preclinical animal models ranging from bone to muscle regeneration, cardiovascular diseases including myocardial and peripheral arterial disease, stroke and Parkinson's disease. On the basis of its biological advantages, CB can be an ideal source for tissue regeneration. However, in the hype of the so-called 'plasticity', many cell types have been characterized either on cell surface Ag expression alone or by RNA expression only, and without detailed characterization of genetic pathways; frequently, cells are defined without analysis of cellular function in vitro and in vivo, and the definition of the lineage of origin and cells have not been defined in preclinical studies. Here, we explore not only the most consistent data with regard to differentiation of CB cells in vitro and in vivo, but also show technical limitations, such as why in contrast to cell populations isolated from fresh CB, cryopreserved CB is not the ideal source for tissue regeneration. By taking advantage of numerous CB units discarded due to lack of sufficient hematopoietic cells for clinical transplantation, new concepts to produce off-the-shelf products are presented as well.
Collapse
Affiliation(s)
- G Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
45
|
Can cellular models revolutionize drug discovery in Parkinson's disease? Biochim Biophys Acta Mol Basis Dis 2009; 1792:1043-51. [PMID: 19733239 DOI: 10.1016/j.bbadis.2009.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/21/2009] [Accepted: 08/26/2009] [Indexed: 02/08/2023]
Abstract
The study of mechanisms that underlie Parkinson's disease (PD), as well as translational drug development, has been hindered by the lack of appropriate models. Both cell culture systems and animal models have limitations, and to date none faithfully recapitulate all of the clinical and pathological phenotypes of the disease. In this review we examine the various cell culture model systems of PD, with a focus on different stem cell models that can be used for investigating disease mechanisms as well as drug discovery for PD. We conclude with a discussion of recent discoveries in the field of stem cell biology that have led to the ability to reprogram somatic cells to a pluripotent state via the use of a combination of genetic factors; these reprogrammed cells are termed "induced pluripotent stem cells" (iPSCs). This groundbreaking technique allows for the derivation of patient-specific cell lines from individuals with sporadic forms of PD and also those with known disease-causing mutations. Such cell lines have the potential to serve as a human cellular model of neurodegeneration and PD when differentiated into dopaminergic neurons. The hope is that these iPSC-derived dopaminergic neurons can be used to replicate the key molecular aspects of neural degeneration associated with PD. If so, this approach could lead to transformative new tools for the study of disease mechanisms. In addition, such cell lines can be potentially used for high-throughput drug screening. While not the focus of this review, ultimately it is envisioned that techniques for reprogramming of somatic cells may be optimized to a point sufficient to provide potential new avenues for stem cell-based restorative therapies.
Collapse
|
46
|
Jäger M, Zilkens C, Bittersohl B, Krauspe R. Cord blood--an alternative source for bone regeneration. Stem Cell Rev Rep 2009; 5:266-77. [PMID: 19652969 DOI: 10.1007/s12015-009-9083-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/20/2009] [Indexed: 12/12/2022]
Abstract
Bone regeneration is one of the best investigated pathways in mesenchymal stromal cell (MSC) biology. Therefore strong efforts have been made to introduce tissue engineering and cell therapeutics as an alternative treatment option for patients with bone defects. This review of the literature gives an overview of MSC biology aiming for clinical application including advantages but also specific challenges and problems which are associated with cord blood derived stromal cell (CB-MSC) as a source for bone regeneration. The use of postnatal CB-MSC is ethically uncomplicated and requires no invasive harvesting procedure. Moreover, most data document a high osteogenic potential of CB-MCS and also low immunoreactivity compared with other MSC types. The expression profile of CB-MSC during osteogenic differentiation shows similarities to that of other MSC types. Within the umbilical cord different MSC types have been characterized which are potent to differentiate into osteoblasts. In contrast to a large number of in vitro investigations there are only few in vivo studies available so far.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
47
|
Park DH, Eve DJ, Musso J, Klasko SK, Cruz E, Borlongan CV, Sanberg PR. Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells Dev 2009; 18:693-702. [DOI: 10.1089/scd.2009.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
- Department of Neurosurgery, Korea University Medical Center, Korea University, Seoul, Korea
| | - David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - James Musso
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | | | - Eduardo Cruz
- Cryopraxis, CellPraxis, BioRio, Pólo de Biotecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| |
Collapse
|
48
|
Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 2009; 16:404-14. [PMID: 19177134 DOI: 10.1038/gt.2008.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Stem cells from a patient with a genetic disease could be used for cell therapy if it were possible to insert a functional copy of the defective gene. In this study, we investigate the transfection and subsequent integration of large genomic fragments into human cord blood-derived multipotent stem cells. We describe for the first time the creation of clonal stem cells carrying a human bacterial artificial chromosome (BAC) containing the Friedreich ataxia locus with an enhanced green fluorescent protein (EGFP) reporter gene fused to exon 5a of the frataxin (FXN) gene. Integration of the BAC into the host cell genome was confirmed by PCR, Southern blot and fluorescent in situ hybridization analysis. Reverse transcription-PCR and flow cytometry confirmed expression of FXN-EGFP. Correct mitochondrial localization of the protein was confirmed using fluorescent microscopy. The transfected stem cells also retained the ability to differentiate into cells from all three germline layers, as demonstrated by the capacity to form neuron-specific beta-tubulin-expressing cells, Alizarin Red S-positive bone-like cells, and epithelial-like cells expressing surfactant protein C. This is the first study to demonstrate that cord blood-derived multipotent stem cells may be useful targets for gene therapy applications using large genomic loci.
Collapse
Affiliation(s)
- F Zaibak
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Winter M, Wang XN, Däubener W, Eyking A, Rae M, Dickinson AM, Wernet P, Kögler G, Sorg RV. Suppression of cellular immunity by cord blood-derived unrestricted somatic stem cells is cytokine-dependent. J Cell Mol Med 2008; 13:2465-2475. [PMID: 19175687 DOI: 10.1111/j.1582-4934.2008.00566.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unrestricted somatic stem cells (USSC) have the potential to differentiate into tissues derived from all three germinal layers and therefore hold promise for use in regenerative therapies. Furthermore, they have haematopoietic stromal activity, a characteristic that may be exploited to enhance haematopoietic engraftment. Both applications may require USSC to be used in an allogeneic, HLA-mismatched setting. We have therefore studied their in vitro interaction with cellular immunity. USSC showed no allostimulatory activity and caused only minimal inhibition of allogeneic T-cell responses. However, following pre-stimulation with IFNgamma and TNFalpha, they inhibited T-cell proliferation in an indoleamine 2, 3-dioxygenase-dependent manner and suppressed graft-versus-host type reactions. In addition, USSC inhibited DC maturation and function. This inhibition was overridden by stronger DC maturation signals provided by IL-1beta, IL-6, PGE(2) and TNFalpha compared to TNFalpha alone. Pre-stimulation of USSC with IFNgamma and TNFalpha had a similar effect: Inhibition of DC maturation was no longer observed. Thus, USSC are conditionally immunosuppressive, and IFNgamma and TNFalpha constitute a switch, which regulates their immunological properties. They either suppress T-cell responses in the presence of both cytokines or in their absence block DC differentiation and function. These activities may contribute to fine-tuning the immune system especially at sites of tissue damage in order to ensure appropriate differentiation of USSC and subsequent tissue repair. Therapeutically, they may help to protect USSC and possibly their progeny from immune rejection.
Collapse
Affiliation(s)
- Meike Winter
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Xiao-Nong Wang
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Walter Däubener
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Annette Eyking
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Michelle Rae
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Wernet
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
50
|
|