1
|
Reprogramming of Dermal Fibroblasts into Osteo-Chondrogenic Cells with Elevated Osteogenic Potency by Defined Transcription Factors. Stem Cell Reports 2017; 8:1587-1599. [PMID: 28528696 PMCID: PMC5470079 DOI: 10.1016/j.stemcr.2017.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Recent studies using defined transcription factors to convert skin fibroblasts into chondrocytes have raised the question of whether osteo-chondroprogenitors expressing SOX9 and RUNX2 could also be generated during the course of the reprogramming process. Here, we demonstrated that doxycycline-inducible expression of reprogramming factors (KLF4 [K] and c-MYC [M]) for 6 days were sufficient to convert murine fibroblasts into SOX9+/RUNX2+ cellular aggregates and together with SOX9 (S) promoted the conversion efficiency when cultured in a defined stem cell medium, mTeSR. KMS-reprogrammed cells possess gene expression profiles akin to those of native osteo-chondroprogenitors with elevated osteogenic properties and can differentiate into osteoblasts and chondrocytes in vitro, but form bone tissue upon transplantation under the skin and in the fracture site of mouse tibia. Altogether, we provide a reprogramming strategy to enable efficient derivation of osteo-chondrogenic cells that may hold promise for cell replacement therapy not limited to cartilage but also for bone tissues. SOX9+/RUNX2+ nodules are generated during the course of chondrogenic reprogramming SOX9+/RUNX2+ nodules exhibit gene expression profiles of osteo-chondroprogenitors Osteo-chondrogenic cells differentiate into chondrocytes and osteoblasts in vitro Osteo-chondrogenic cells acquire elevated osteogenic potency in vivo
Collapse
|
2
|
Xu X, Shi D, Liu Y, Yao Y, Dai J, Xu Z, Chen D, Teng H, Jiang Q. In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model. Exp Ther Med 2017; 14:239-245. [PMID: 28672920 PMCID: PMC5488398 DOI: 10.3892/etm.2017.4474] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Cell-based tissue engineering has the potential to restore cartilage defects. Induced pluripotent stem cells (iPSCs) are regarded as an alternative cell source in regenerative medicine. The purpose of the present study was to evaluate the use of mesenchymal stem cells (MSCs) derived from human iPSCs (hiPSCs) for the regeneration of cartilage defects in a rabbit model. Cartilage defects were made in the patellar grooves of New Zealand white rabbits. The rabbits were then divided into three groups according to implantation: Control group, scaffold implantation group and scaffold/hiPSCs-MSCs (experimental) group. MSCs were generated from hiPSCs via a step of embryoid body formation. Following flow cytological analysis, the hiPSCs-MSCs were plated onto poly(lactic-co-glycolide) and then transplanted into the cartilage defects in the experimental group. Six rabbits from each group were sacrificed at each time point. The outcome was assessed macroscopically and histologically at 3 and 6 weeks post-surgery. At 3 and 6 weeks, the experimental group showed more cartilage defect filling compared with the control and scaffold implantation groups. At 3 weeks, the experimental group showed much more repair tissue in the cartilage defect, although no cartilage-like tissue was observed. At 6 weeks, cartilage-like tissue was observed in the experimental group but not in the control or scaffold implantation groups. No teratoma formation was observed in any of the groups. The results indicate that iPSCs have the potential to repair cartilage defects in vivo. Therefore, iPSCs could be a new cell source for cartilage defect repair.
Collapse
Affiliation(s)
- Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yubao Liu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yao Yao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Dai
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongyang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huajian Teng
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
3
|
He P, Fu J, Wang DA. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta Biomater 2016; 35:87-97. [PMID: 26911880 DOI: 10.1016/j.actbio.2016.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. STATEMENT OF SIGNIFICANCE In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive procedure. Our results demonstrated chondrogenic differentiation could be realized on the platform via mesoderm differentiation. The mESCs/miPSCs derived chondrocytic cells were further cultured to finally generate a pluripotent stem cells-derived scaffold-free construct based on the micro-cavitary hydrogel platform, in which alginate hydrogel could be removed finally. Our results showed that miPSC-derived graft could be formed by cells with chondrocytic phenotype wrapped by abundant and assembled collagen type II. To our knowledge, this study is the first study that initials from pluripotent stem cell seeding on 3D scaffold environment and ends with a scaffold-free chondrogenic micro-tissue. By the support of materials and methodologies established from this study, engineered autologous iPSC-derived cartilage engraftment may be potentially developed instead of autologous chondrocytes grafts that have limited source.
Collapse
|
4
|
Lam ATL, Chen AKL, Li J, Birch WR, Reuveny S, Oh SKW. Conjoint propagation and differentiation of human embryonic stem cells to cardiomyocytes in a defined microcarrier spinner culture. Stem Cell Res Ther 2014; 5:110. [PMID: 25223792 PMCID: PMC4183116 DOI: 10.1186/scrt498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022] Open
Abstract
Introduction Myocardial infarction is accompanied by a significant loss of cardiomyocytes (CMs). Functional CMs, differentiated from human embryonic stem cells (hESCs), offer a potentially unlimited cell source for cardiac disease therapies and regenerative cardiovascular medicine. However, conventional production methods on monolayer culture surfaces cannot adequately supply the large numbers of cells required for such treatments. To this end, an integrated microcarrier (MC) bioprocessing system for hESC propagation and subsequent CM differentiation was developed. Methods Production of hESC-derived CMs was initially established in monolayer cultures. This control condition was compared against hESC expansion on laminin-coated MC with cationic surface charge, in a stirred serum-free defined culture. Following expansion, the hESC/MC aggregates were placed in a CM differentiation medium, using Wnt signalling modulators in four different culture conditions. This process eliminated the need for manual colony cutting. The final optimized protocol was tested in stirred spinner flasks, combining expansion and differentiation on the same MC, with only media changes during the culture process. Results In the propagation phase, a 15-fold expansion of viable pluripotent HES-3 was achieved, with homogeneous sized aggregates of 316 ± 11 μm. Of the four differentiation conditions, stirred spinner flask cultures (MC-Sp) provided the best controlled aggregate sizes and yielded 1.9 × 106 CM/ml, as compared to 0.5 × 106 CM/ml using the monolayer cultures method: a four-fold increase in CM/ml. Similar results (1.3 × 106 CM/ml) were obtained with an alternative hESC H7 line. The hESC/MC-derived CM expressed cardiac-specific transcription factors, structural, ion channel genes, and exhibited cross-striations of sarcomeric proteins, thus confirming their cardiac ontogeny. Moreover, E-4031 (0.3 μM) prolonged the QT-interval duration by 40% and verapamil (3 μM) reduced it by 45%, illustrating the suitability of these CM for pharmacological assays. Conclusions We have demonstrated a robust and scalable microcarrier system for generating hESC-derived CM. This platform is enabled by defined microcarrier matrices and it integrates cell propagation and differentiation within a continuous process, in serum-free culture media. It can generate significant numbers of CM, which are potentially suitable for future clinical therapies. Electronic supplementary material The online version of this article (doi:10.1186/scrt498) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Wang T, Lai JH, Han LH, Tong X, Yang F. Chondrogenic Differentiation of Adipose-Derived Stromal Cells in Combinatorial Hydrogels Containing Cartilage Matrix Proteins with Decoupled Mechanical Stiffness. Tissue Eng Part A 2014; 20:2131-9. [DOI: 10.1089/ten.tea.2013.0531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Tianyi Wang
- Department of Bioengineering, Stanford University, Stanford, California
| | - Janice H. Lai
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Li-Hsin Han
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
6
|
Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol 2013; 34:89-100. [PMID: 24083452 DOI: 10.3109/07388551.2013.823596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Biomedical Engineering, University of California , Davis, CA , USA
| | | | | | | | | | | |
Collapse
|
7
|
Craft AM, Ahmed N, Rockel JS, Baht GS, Alman BA, Kandel RA, Grigoriadis AE, Keller GM. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 2013; 140:2597-610. [PMID: 23715552 DOI: 10.1242/dev.087890] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Osteoarthritis primarily affects the articular cartilage of synovial joints. Cell and/or cartilage replacement is a promising therapy, provided there is access to appropriate tissue and sufficient numbers of articular chondrocytes. Embryonic stem cells (ESCs) represent a potentially unlimited source of chondrocytes and tissues as they can generate a broad spectrum of cell types under appropriate conditions in vitro. Here, we demonstrate that mouse ESC-derived chondrogenic mesoderm arises from a Flk-1(-)/Pdgfrα(+) (F(-)P(+)) population that emerges in a defined temporal pattern following the development of an early cardiogenic F(-)P(+) population. Specification of the late-arising F(-)P(+) population with BMP4 generated a highly enriched population of chondrocytes expressing genes associated with growth plate hypertrophic chondrocytes. By contrast, specification with Gdf5, together with inhibition of hedgehog and BMP signaling pathways, generated a population of non-hypertrophic chondrocytes that displayed properties of articular chondrocytes. The two chondrocyte populations retained their hypertrophic and non-hypertrophic properties when induced to generate spatially organized proteoglycan-rich cartilage-like tissue in vitro. Transplantation of either type of chondrocyte, or tissue generated from them, into immunodeficient recipients resulted in the development of cartilage tissue and bone within an 8-week period. Significant ossification was not observed when the tissue was transplanted into osteoblast-depleted mice or into diffusion chambers that prevent vascularization. Thus, through stage-specific manipulation of appropriate signaling pathways it is possible to efficiently and reproducibly derive hypertrophic and non-hypertrophic chondrocyte populations from mouse ESCs that are able to generate distinct cartilage-like tissue in vitro and maintain a cartilage tissue phenotype within an avascular and/or osteoblast-free niche in vivo.
Collapse
Affiliation(s)
- April M Craft
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Koyama N, Miura M, Nakao K, Kondo E, Fujii T, Taura D, Kanamoto N, Sone M, Yasoda A, Arai H, Bessho K, Nakao K. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev 2012; 22:102-13. [PMID: 22817676 DOI: 10.1089/scd.2012.0127] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) exhibit pluripotency, proliferation capability, and gene expression similar to those of human embryonic stem cells (hESCs). hESCs readily form cartilaginous tissues in teratomas in vivo; despite extensive effort, however, to date no efficient method for inducing mature chondrocytes in vitro has been established. hiPSCs can also differentiate into cartilage in vivo by teratoma formation, but as with hESCs, no reliable system for in vitro chondrogenic differentiation of hiPSCs has yet been reported. Here, we examined the chondrogenic differentiation capability of hiPSCs using a multistep culture method consisting of embryoid body (EB) formation, cell outgrowth from EBs, monolayer culture of sprouted cells from EBs, and 3-dimensional pellet culture. In this culture process, the cell density of monolayer culture was critical for cell viability and subsequent differentiation capability. Monolayer-cultured cells exhibited fibroblast-like morphology and expressed markers for mesenchymal stem cells. After 2-3 weeks of pellet culture, cells in pellets exhibited a spherical morphology typical of chondrocytes and were surrounded by extracellular matrix that contained acidic proteoglycans. The expression of type II collagen and aggrecan in pellets progressively increased. Histological analysis revealed that over 70% of hiPSC-derived pellets successfully underwent chondrogenic differentiation. Using the same culture method, hESCs showed similar histological changes and gene expression, but differentiated slightly faster and more efficiently than hiPSCs. Our study demonstrates that hiPSCs can be efficiently differentiated into the chondrogenic lineage in vitro via generation of mesenchymal progenitor cells, using a simplified, multistep culture method.
Collapse
Affiliation(s)
- Noriaki Koyama
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Taru Sharma G, Dubey PK, Verma OP, Pratheesh M, Nath A, Sai Kumar G. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells. Biochem Biophys Res Commun 2012; 424:378-84. [DOI: 10.1016/j.bbrc.2012.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/23/2022]
|
10
|
Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S. Insulin-Like Growth Factor 2 Promotes Osteogenic Cell Differentiation in the Parthenogenetic Murine Embryonic Stem Cells. Tissue Eng Part A 2012; 18:331-41. [DOI: 10.1089/ten.tea.2011.0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hoin Kang
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jihye Sung
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hong-Moon Jung
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
11
|
Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev Rep 2011; 7:544-59. [PMID: 21188652 DOI: 10.1007/s12015-010-9222-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current surgical intervention of using autologous chondrocyte implantation (ACI) for cartilage repair is associated with several problems such as donor site morbidity, de-differentiation upon expansion and fibrocartilage repair following transplantation. This has led to exploration of the use of stem cells as a model for chondrogenic differentiation as well as a potential source of chondrogenic cells for cartilage tissue engineering and repair. Embryonic stem cells (ESCs) are advantageous, due to their unlimited self-renewal and pluripotency, thus representing an immortal cell source that could potentially provide an unlimited supply of chondrogenic cells for both cell and tissue-based therapies and replacements. This review aims to present an overview of emerging trends of using ESCs in cartilage tissue engineering and regenerative medicine. In particular, we will be focusing on ESCs as a promising cell source for cartilage regeneration, the various strategies and approaches employed in chondrogenic differentiation and tissue engineering, the associated outcomes from animal studies, and the challenges that need to be overcome before clinical application is possible.
Collapse
|
12
|
Yukawa H, Noguchi H, Hayashi S. Embryonic body formation using the tapered soft stencil for cluster culture device. Biomaterials 2011; 32:3729-38. [DOI: 10.1016/j.biomaterials.2011.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 12/20/2022]
|
13
|
Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 2010; 25:2470-8. [PMID: 20564244 DOI: 10.1002/jbmr.163] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Statins are potent inhibitors of cholesterol synthesis. Several statins are available with different molecular and pharmacokinetic properties. Simvastatin is more lipophilic than pravastatin and has a higher affinity to phospholipid membranes than atorvastatin, allowing its passive diffusion through the cell membrane. In vitro studies on bone marrow stromal cells, osteoblast-like cells, and embryonic stem cells have shown statins to have cholesterol-independent anabolic effects on bone metabolism; alas, statins were supplemented in osteogenic medium, which does not facilitate elucidation of their potential osteoinductive properties. Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, are unique in that they enjoy perpetual self-proliferation, are pluripotent, and are able to differentiate toward all the cellular lineages composing the body, including the osteogenic lineage. Consequently, ESCs represent a potentially potent cell source for future clinical cellular therapies of various bone diseases, even though there are several hurdles that still need to be overcome. Herein we demonstrate, for the first time to our knowledge, that simvastatin induces murine ESC (mESC) differentiation toward the osteogenic lineage in the absence of osteoinductive supplements. Specifically, we found that a simvastatin concentration in the micromolar range and higher was toxic to the cells and that an effective concentration for osteoinduction is 0.1 nM, as shown by increased alizarin red staining as well as increased osteocalcin and osetrix gene expression. These results suggest that in the future, lipophilic simvastatin may provide a novel pharmacologic agent for bone tissue engineering applications.
Collapse
Affiliation(s)
- Joseph Pagkalos
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Carpenedo RL, Seaman SA, McDevitt TC. Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation. J Biomed Mater Res A 2010; 94:466-75. [PMID: 20213812 DOI: 10.1002/jbm.a.32710] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Differentiation of pluripotent embryonic stem cells (ESCs) in vitro via multicellular spheroids called embryoid bodies (EBs) is commonly performed to model aspects of early mammalian development and initiate differentiation of cells for regenerative medicine technologies. However, the three-dimensional nature of EBs poses unique challenges for directed ESC differentiation, including limited diffusion into EBs of morphogenic molecules capable of specifying cell fate. Degradable polymer microspheres incorporated within EBs can present morphogenic molecules to ESCs in a spatiotemporally controlled manner to more efficiently direct differentiation. In this study, the effect of microsphere size on incorporation into EBs and ESC differentiation in response to microsphere- mediated morphogen delivery were assessed. PLGA microspheres with mean diameters of 1, 3, or 11 microm were fabricated and mixed with ESCs during EB formation. Smaller microspheres were incorporated more efficiently throughout EBs than larger microspheres, and regardless of size, retained for at least 10 days of differentiation. Retinoic acid release from incorporated microspheres induced EB cavitation in a size-dependent manner, with smaller microspheres triggering accelerated and more complete cavitation than larger particles. These results demonstrate that engineering the size of microsphere delivery vehicles incorporated within stem cell environments can be used to modulate the course of differentiation.
Collapse
Affiliation(s)
- Richard L Carpenedo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
15
|
Gong G, Ferrari D, Dealy CN, Kosher RA. Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 2010; 224:664-71. [PMID: 20432462 DOI: 10.1002/jcp.22166] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self-repair. Because of their unlimited capacity for self-renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF-beta1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC-derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC-derived progenitors in different phases of the chondrogenic lineage for cartilage repair.
Collapse
Affiliation(s)
- Guochun Gong
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
16
|
Jukes JM, van Blitterswijk CA, de Boer J. Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 2010; 4:165-80. [PMID: 19967745 DOI: 10.1002/term.234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Various cell types have been investigated as candidate cell sources for cartilage and bone tissue engineering. In this review, we focused on chondrogenic and osteogenic differentiation of mouse and human embryonic stem cells (ESCs) and their potential in cartilage and bone tissue engineering. A decade ago, mouse ESCs were first used as a model to study cartilage and bone development and essential genes, factors and conditions for chondrogenesis and osteogenesis were unravelled. This knowledge, combined with data from the differentiation of adult stem cells, led to successful chondrogenic and osteogenic differentiation of mouse ESCs and later also human ESCs. Next, researchers focused on the use of ESCs for skeletal tissue engineering. Cartilage and bone tissue was formed in vivo using ESCs. However, the amount, homogeneity and stability of the cartilage and bone formed were still insufficient for clinical application. The current protocols require improvement not only in differentiation efficiency but also in ESC-specific hurdles, such as tumourigenicity and immunorejection. In addition, some of the general tissue engineering challenges, such as cell seeding and nutrient limitation in larger constructs, will also apply for ESCs. In conclusion, there are still many challenges, but there is potential for ESCs in skeletal tissue engineering.
Collapse
Affiliation(s)
- Jojanneke M Jukes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
17
|
Zhou J, Zhang Y, Lin Q, Liu Z, Wang H, Duan C, Wang Y, Hao T, Wu K, Wang C. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J Genet Genomics 2010; 37:451-60. [DOI: 10.1016/s1673-8527(09)60064-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 12/21/2022]
|
18
|
Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro. BMC Cell Biol 2010; 11:42. [PMID: 20565897 PMCID: PMC2900228 DOI: 10.1186/1471-2121-11-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 06/19/2010] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Embryonic stem (ES) cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. RESULTS Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB) formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. CONCLUSIONS The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.
Collapse
|
19
|
Yang Z, Sui L, Toh WS, Lee EH, Cao T. Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells. Stem Cells Dev 2009; 18:929-40. [PMID: 18855519 DOI: 10.1089/scd.2008.0219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) is known to be a potent inducer of stem cell chondrogenic differentiation. Transforming growth factor-beta/activin/nodal-signaling pathway has also been shown to be involved in maintaining the pluripotency of embryonic stem cells (ESCs). In this study, the effect of TGF-beta1 in chondrogenic differentiation of ESCs was examined both with undifferentiated ESCs that bypassed classical embryoid body (EB) formation, and on 5-day EB-derived cells. The effect of TGF-beta1 was compared to cells differentiated in serum-free chondrogenic basal medium without growth factor supplement. Analysis by real-time polymerase chain reaction (PCR), type II collagen enzyme-linked immunosorbent assay, sulfated glycoaminoglycan quantification and fluorescence immunostaining demonstrated substantial chondrogenic differentiation of ESCs regardless of EB formation in the absence of the growth factor. Addition of TGF-beta1 significantly inhibited chondrogenic gene expression and collagen deposition with a more potent effect on the cells that bypassed EB formation. Our study using a TGF-beta/activin/nodal-signaling inhibitor suggested that TGF-beta inhibited early chondrogenic induction but was required at the later stage of differentiation, which was also reflected in the enhancing effect of TGF-beta1 on chondrogenic development at later time points in EB-derived cells. Analysis of the pluripotency markers demonstrated sustained Oct4 and Nanog expression in the presence of TGF-beta1 with Oct4-positive cells detected in subpopulations of the differentiated culture. Our results suggest that TGF-beta1 suppresses ESC chondrogenic induction and the degree of suppression is dependent on the differentiation-stage of the ESC. Transforming growth factor-beta signaling, however, is required for functional chondrogenic development of ESC. Our finding that TGF-beta can sustain an undifferentiated population of human ESCs within the differentiation culture suggests that caution should be exercised when using this growth factor as an ESC chondrogenic inducer and highlights the importance of a selection protocol for chondroprogenitor cells to avoid possible teratoma formation in vivo.
Collapse
Affiliation(s)
- Zheng Yang
- Stem Cell Laboratory, Department of Oral Maxillo-Facial Surgery, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
20
|
Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death Differ 2008; 16:278-86. [DOI: 10.1038/cdd.2008.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|