1
|
Tsata V, Kroehne V, Reinhardt S, El-Armouche A, Brand M, Wagner M, Reimer MM. Electrophysiological Properties of Adult Zebrafish Oligodendrocyte Progenitor Cells. Front Cell Neurosci 2019; 13:102. [PMID: 31031593 PMCID: PMC6473327 DOI: 10.3389/fncel.2019.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Low remyelination efficiency after spinal cord injury (SCI) is a major restraint to successful axonal and functional regeneration in mammals. In contrast, adult zebrafish can: (i) regenerate oligodendrocytes and myelin sheaths within 2 weeks post lesion; (ii) re-grow axonal projections across the lesion site and (iii) recover locomotor function within 6 weeks after spinal cord transection. However, little is known about the intrinsic properties of oligodendrocyte progenitor cells (OPCs), the remyelinating cells of the central nervous system (CNS). Here, we demonstrate that purified OPCs from the adult zebrafish spinal cord are electrically active. They functionally express voltage-gated K+ and Na+ channels, glutamate receptors and exhibit depolarizing, tetrodotoxin (TTX)-sensitive spikes, as previously seen in rodent and human OPCs. Furthermore, we show that the percentage of zebrafish OPCs exhibiting depolarizing spikes and Nav-mediated currents is lower as compared to rodent white matter OPCs, where these membrane characteristics have been shown to underlie OPC injury susceptibility. These findings imply that adult zebrafish OPCs resemble electrical properties found in mammals and represent a relevant cell type towards understanding the biology of the primary cells targeted in remyelination therapies for non-regenerative species. The in vitro platform introduced in this study could be used in the future to: (i) elucidate how membrane characteristics of zebrafish OPCs change upon injury and (ii) identify potential signaling components underlying OPC injury recognition.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Center for Regenerative Therapies TU Dresden (CRTD) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet, Dresden, Germany
| | - Volker Kroehne
- Center for Regenerative Therapies TU Dresden (CRTD) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet, Dresden, Germany
| | - Susanne Reinhardt
- Dresden Genome Center, Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden (CRTD) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet, Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Technische Universitaet Dresden, Dresden, Germany.,Department of Rhythmology, Heart Center Dresden, Technische Universitaet Dresden, Dresden, Germany
| | - Michell M Reimer
- Center for Regenerative Therapies TU Dresden (CRTD) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universitaet, Dresden, Germany
| |
Collapse
|
2
|
Livesey MR, Magnani D, Cleary EM, Vasistha NA, James OT, Selvaraj BT, Burr K, Story D, Shaw CE, Kind PC, Hardingham GE, Wyllie DJA, Chandran S. Maturation and electrophysiological properties of human pluripotent stem cell-derived oligodendrocytes. Stem Cells 2016; 34:1040-53. [PMID: 26763608 PMCID: PMC4840312 DOI: 10.1002/stem.2273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Rodent‐based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation‐specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage‐gated sodium and potassium channels and a loss of tetrodotoxin‐sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72‐carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease‐causing mutations on oligodendrocyte maturation to be studied. Stem Cells2016;34:1040–1053
Collapse
Affiliation(s)
- Matthew R Livesey
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Dario Magnani
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine M Cleary
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Navneet A Vasistha
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Owain T James
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David Story
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Peter C Kind
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Krencik R, Ullian EM. A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies. Front Cell Neurosci 2013; 7:25. [PMID: 23503583 PMCID: PMC3596764 DOI: 10.3389/fncel.2013.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/28/2013] [Indexed: 11/13/2022] Open
Abstract
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, CA, USA
| | | |
Collapse
|
4
|
Morgan PJ, Liedmann A, Hübner R, Hovakimyan M, Rolfs A, Frech MJ. Human neural progenitor cells show functional neuronal differentiation and regional preference after engraftment onto hippocampal slice cultures. Stem Cells Dev 2011; 21:1501-12. [PMID: 21867424 DOI: 10.1089/scd.2011.0335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transplantation of stem cells offers potential therapies for many neurodegenerative disorders that currently have limited or no treatment options. However, relatively little is known about how the host environment affects the development and integration of these cells. In this study we have engrafted immortalized human midbrain neural progenitor cells (NPCs) onto rat hippocampal brain slice cultures to examine the influence of a neural environment on differentiation. Patch clamp recordings revealed that the transplanted progenitor cells could express neuronal-type voltage-gated currents and rapidly receive synaptic input from the hippocampal brain slice. The distribution of progenitor cells across the hippocampal slices was strongly influenced by the neural architecture, with most cells located in the fissural regions and sending processes parallel to the laminar structure, while in contrast, cells located in the dentate gyrus showed no organized pattern. Almost no cells were found in the stratum radiatum or pyramidal cell layers. Together, these results demonstrate the potential for the architecture of the host environment to regulate the integration of transplanted cells, and highlight the utility of coculture systems for studying the mechanisms underlying the migration, integration, and differentiation of human NPCs in structured neural environments.
Collapse
Affiliation(s)
- Peter J Morgan
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Park DH, Eve DJ, Musso J, Klasko SK, Cruz E, Borlongan CV, Sanberg PR. Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells Dev 2009; 18:693-702. [DOI: 10.1089/scd.2009.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
- Department of Neurosurgery, Korea University Medical Center, Korea University, Seoul, Korea
| | - David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - James Musso
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | | | - Eduardo Cruz
- Cryopraxis, CellPraxis, BioRio, Pólo de Biotecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| |
Collapse
|