1
|
dos Reis YG, Guerra MEP, Coutinho MDP, Santos SIP, Mota BD, Munhoz LLDS, Rossetti DP, Martins DDS. Wild Birds' Genetic Resources Bank: Feather Follicle Cell Culture as a Possible Source of Stem Cells. Methods Protoc 2025; 8:17. [PMID: 39997641 PMCID: PMC11858370 DOI: 10.3390/mps8010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Follicular cells represent a valuable resource for genetic research, biotechnology and cryopreservation in biobanks, particularly for the conservation of endangered species. They offer a more practical alternative to gametes, embryos and fibroblasts. Collection of these cells can be achieved through feather plucking. Feather samples were opened with a scalpel and the feather pulp was washed with PBS, cut into cubes and digested in collagenase type IV. Cultivation was carried out in DMEM culture medium with 15% fetal bovine serum, 1% penicillin/streptomycin and 0.5% amphotericin, under incubation conditions of 39.5 °C and 5% CO2. Passages were carried out with 5% EDTA for 5 min. The culture was successful, with great cell proliferation, adherence to plastic and aggregation into cell colonies. This method was effective in obtaining feather follicle cells from wild birds, especially when collected up to 6 h after their death, and can serve as a base protocol for research with feather follicle cells aiming to create biobanks.
Collapse
Affiliation(s)
- Yasmin Godoi dos Reis
- Laboratory of Immunohistochemistry and Experimental Physiology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (Y.G.d.R.); (M.E.P.G.); (B.D.M.); (L.L.d.S.M.)
| | - Maria Eduarda Pralon Guerra
- Laboratory of Immunohistochemistry and Experimental Physiology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (Y.G.d.R.); (M.E.P.G.); (B.D.M.); (L.L.d.S.M.)
| | - Meline de Paula Coutinho
- Laboratory of Stem Cells and Gene Therapy, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.d.P.C.); (S.I.P.S.)
| | - Sarah Ingrid Pinto Santos
- Laboratory of Stem Cells and Gene Therapy, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (M.d.P.C.); (S.I.P.S.)
| | - Bruna Dias Mota
- Laboratory of Immunohistochemistry and Experimental Physiology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (Y.G.d.R.); (M.E.P.G.); (B.D.M.); (L.L.d.S.M.)
| | - Lauriene Luiza de Souza Munhoz
- Laboratory of Immunohistochemistry and Experimental Physiology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (Y.G.d.R.); (M.E.P.G.); (B.D.M.); (L.L.d.S.M.)
| | | | - Daniele dos Santos Martins
- Laboratory of Immunohistochemistry and Experimental Physiology, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (Y.G.d.R.); (M.E.P.G.); (B.D.M.); (L.L.d.S.M.)
| |
Collapse
|
2
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
3
|
Lee CK, Wang FT, Huang CH, Chan WH. Prevention of methylmercury-triggered ROS-mediated impairment of embryo development by co-culture with adult adipose-derived mesenchymal stem cells. Toxicol Res (Camb) 2024; 13:tfad122. [PMID: 38162594 PMCID: PMC10753290 DOI: 10.1093/toxres/tfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Methylmercury (MeHg) is a potent toxin that exerts deleterious effects on human health via environmental contamination. Significant effects of MeHg on neuronal development in embryogenesis have been reported. Recently, our group demonstrated that MeHg exerts toxic effects on pre- and post-implantation embryonic development processes from zygote to blastocyst stage. Our results showed that MeHg impairs embryo development by induction of apoptosis through reactive oxygen species (ROS) generation that triggers caspase-3 cleavage and activation, which, in turn, stimulates p21-activated kinase 2 (PAK2) activity. Importantly, ROS were identified as a key upstream regulator of apoptotic events in MeHg-treated blastocysts. Data from the current study further confirmed that MeHg exerts hazardous effects on cell proliferation, apoptosis, implantation, and pre- and post-implantation embryo development. Notably, MeHg-induced injury was markedly prevented by co-culture with adipose-derived mesenchymal stem cells (ADMSCs) in vitro. Furthermore, ADMSC injection significantly reduced MeHg-mediated deleterious effects on embryo, placenta, and fetal development in vivo. Further investigation of the regulatory mechanisms by which co-cultured ADMSCs could prevent MeHg-induced impairment of embryo development revealed that ADMSCs effectively reduced ROS generation and its subsequent downstream apoptotic events, including loss of mitochondrial membrane potential and activation of caspase-3 and PAK2. The collective findings indicate that co-culture with mesenchymal stem cells (MSCs) or utilization of MSC-derived cell-conditioned medium offers an effective potential therapeutic strategy to prevent impairment of embryo development by MeHg.
Collapse
Affiliation(s)
- Cheng-Kai Lee
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Zhongshan Road, Taoyuan District, Taoyuan City 33004, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Section 2, Shipai Road, Beitou District, Taipei City 11217, Taiwan
| | - Chien-Hsun Huang
- Hungchi Gene IVF Center, Daxing West Road, Taoyuan District, Taoyuan City 330012, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| |
Collapse
|
4
|
Zhang M, Tian Y, Zhang S, Yan H, Ge W, Han B, Yan Z, Cheng S, Shen W. The proliferation role of LH on porcine primordial germ cell-like cells (pPGCLCs) through ceRNA network construction. Clin Transl Med 2021; 11:e560. [PMID: 34709759 PMCID: PMC8516341 DOI: 10.1002/ctm2.560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The transdifferentiation of skin-derived stem cells (SDSCs) into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells research in recent years. This technology provides a new theoretical basis for the treatment of human infertility. However, the transdifferentiation efficiency of SDSCs to PGCLCs is very low, and scientists are still exploring ways to improve this efficiency or promote the proliferation of PGCLCs. This study aims to investigate the molecular mechanism of luteinising hormone (LH) to enhance porcine PGCLCs (pPGCLCs) proliferation. RESULTS In this study, we dissected the proliferation regulatory network of pPGCLCs by whole transcriptome sequencing, and the results showed that the pituitary-secreted reproductive hormone LH significantly promoted the proliferation of pPGCLCs. We combined whole transcriptome sequencing and related validation experiments to explore the mechanism of LH on the proliferation of pPGCLCs, and found that LH could affect the expression of Hippo signalling pathway-related mRNAs, miRNAs and lncRNAs in pPGCLCs. CONCLUSIONS For the first time, we found that LH promotes pPGCLCs proliferation through the competing endogenous RNA (ceRNA) regulatory networks and Hippo signalling pathway. This finding may help to elucidate the molecular mechanism by which LH promotes pPGCLCs proliferation.
Collapse
Affiliation(s)
- Ming‐Yu Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Shu‐Er Zhang
- Animal Husbandry General Station of Shandong ProvinceJinanChina
| | - Hong‐Chen Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Bao‐Quan Han
- Urology DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Zi‐Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Shun‐Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
5
|
Zhankina R, Baghban N, Askarov M, Saipiyeva D, Ibragimov A, Kadirova B, Khoradmehr A, Nabipour I, Shirazi R, Zhanbyrbekuly U, Tamadon A. Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review. Stem Cell Res Ther 2021; 12:229. [PMID: 33823925 PMCID: PMC8025392 DOI: 10.1186/s13287-021-02295-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men.
Collapse
Affiliation(s)
- Rano Zhankina
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Manarbek Askarov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Dana Saipiyeva
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Almaz Ibragimov
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Bakhyt Kadirova
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine, UNSW Sydney, PO Box 2052, Sydney, Australia
| | - Ulanbek Zhanbyrbekuly
- Department of Urology and Andrology, Astana Medical University, Nur-Sultan, Kazakhstan 010000
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7514633196 Iran
| |
Collapse
|
6
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
7
|
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We have been Succeeded. Cells 2020; 9:E557. [PMID: 32120836 PMCID: PMC7140496 DOI: 10.3390/cells9030557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
8
|
Calle A, Barrajón-Masa C, Gómez-Fidalgo E, Martín-Lluch M, Cruz-Vigo P, Sánchez-Sánchez R, Ramírez MÁ. Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Res Ther 2018; 9:178. [PMID: 29973295 PMCID: PMC6032775 DOI: 10.1186/s13287-018-0933-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background Recently, the capacity of mesenchymal stem/stromal cells (MSCs) to migrate into damaged tissues has been reported. For MSCs to be a promising tool for tissue engineering and cell and gene therapy, it is essential to know their migration ability according to their tissue of origin. However, little is known about the molecular mechanisms regulating porcine MSC chemotaxis. The aim of this study was to examine the migratory properties in an inflammatory environment of porcine MSC lines from different tissue origins: subcutaneous adipose tissue (SCA-MSCs), abdominal adipose tissue (AA-MSCs), dermal skin tissue (DS-MSCs) and peripheral blood (PB-MSCs). Methods SCA-MSCs, AA-MSCs, DS-MSCs and PB-MSCs were isolated and analyzed in terms of morphological features, alkaline phosphatase activity, expression of cell surface and intracellular markers of pluripotency, proliferation, in vitro chondrogenic, osteogenic and adipogenic differentiation capacities, as well as their ability to migrate in response to inflammatory cytokines. Results SCA-MSCs, AA-MSCs, DS-MSCs and PB-MSCs were isolated and showed plastic adhesion with a fibroblast-like morphology. All MSC lines were positive for CD44, CD105, CD90 and vimentin, characteristic markers of MSCs. The cytokeratin marker was also detected in DS-MSCs. No expression of MHCII or CD34 was detected in any of the four types of MSC. In terms of pluripotency features, all MSC lines expressed POU5F1 and showed alkaline phosphatase activity. SCA-MSCs had a higher growth rate compared to the rest of the cell lines, while the AA-MSC cell line had a longer population doubling time. All MSC lines cultured under adipogenic, chondrogenic and osteogenic conditions showed differentiation capacity to the previously mentioned mesodermal lineages. All MSC lines showed migration ability in an agarose drop assay. DS-MSCs migrated greater distances than the rest of the cell lines both in nonstimulated conditions and in the presence of the inflammatory cytokines TNF-α and IL-1β. SCA-MSCs and DS-MSCs increased their migration capacity in the presence of IL-1β as compared to PBS control. Conclusions This study describes the isolation and characterization of porcine cell lines from different tissue origin, with clear MSC properties. We show for the first time a comparative study of the migration capacity induced by inflammatory mediators of porcine MSCs of different tissue origin.
Collapse
Affiliation(s)
- Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Clara Barrajón-Masa
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Ernesto Gómez-Fidalgo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Mercedes Martín-Lluch
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Paloma Cruz-Vigo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Raúl Sánchez-Sánchez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Adib S, Valojerdi MR. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer. Res Vet Sci 2017; 114:378-387. [DOI: 10.1016/j.rvsc.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
|
10
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
11
|
Arrizabalaga JH, Nollert MU. Properties of porcine adipose-derived stem cells and their applications in preclinical models. Adipocyte 2017; 6:217-223. [PMID: 28410000 DOI: 10.1080/21623945.2017.1312040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells represent a reliable adult stem cell source thanks to their abundance, straightforward isolation, and broad differentiation abilities. Consequently, human adipose-derived stem cells (hASCs) have been used in vitro for several innovative cellular therapy and regenerative medicine applications. However, the translation of a novel technology from the laboratory to the clinic requires first to evaluate its safety, feasibility, and potential efficacy through preclinical studies in animals. The anatomy and physiology of pigs and humans are very similar, establishing pigs as an attractive and popular large animal model for preclinical studies. Knowledge of the properties of porcine adipose-derived stem cells (pASCs) used in preclinical studies is critical for their success. While hASCs have been extensively studied this past decade, only a handful of reports relate to pASCs. The aim of this concise review is to summarize the current findings about the isolation of pASCs, their culture, proliferation, and immunophenotype. The differentiation abilities of pASCs and their applications in porcine preclinical models will also be reported.
Collapse
Affiliation(s)
| | - Matthias U. Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- School of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
12
|
Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. ZYGOTE 2017; 25:341-357. [DOI: 10.1017/s0967199417000211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SummaryThis study aims to investigate the effect 5-azacytidine (5-Aza) during induction of pluripotency in bovine fibroblasts and to evaluate the effects of BMP2, BMP4 or follicular fluid in the differentiation of reprogrammed fibroblasts in primordial germ cells and oocytes. It also analysis the mRNA levels for OCT4, NANOG, REX, SOX2, VASA, DAZL, cKIT, SCP3, ZPA and GDF9 after culturing 5-Aza treated fibroblasts in the different tested medium. Dermal fibroblasts were cultured and exposed to 0.5, 1.0 or 2.0 μM of 5-Aza for 18 h, 36 h or 72 h. Then, the cells were cultured in DMEM/F12 supplemented with 10 ng/ml BMP2, 10 ng/ml BMP4 or 5% follicular fluid. After culture, morphological characteristics, viability and gene expression were evaluated by qPCR. Treatment of skin fibroblasts with 2.0 μM 5-Aza for 72 h significantly increased expression of mRNAs for SOX2, OCT4, NANOG and REX. The culture in medium supplemented with BMP2, BMP4 or follicular fluid for 7 or 14 days induced formation of oocyte-like cells, as well as the expression of markers for germ cells and oocyte. In conclusion, treatment of bovine skin-derived fibroblasts with 2.0 μM 5-Aza for 72 h induces the expression of pluripotency factors. Culturing these cells in differentiation medium supplemented with BMP2, BMP4 or follicular fluid induces morphological changes and promotes expression of markers for germ cells, meiosis and oocyte.
Collapse
|
13
|
Ratajczak MZ, Ratajczak J, Suszynska M, Miller DM, Kucia M, Shin DM. A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells. Circ Res 2017; 120:166-178. [PMID: 28057792 DOI: 10.1161/circresaha.116.309362] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.).
| | - Janina Ratajczak
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Malwina Suszynska
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Donald M Miller
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Magda Kucia
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Dong-Myung Shin
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| |
Collapse
|
14
|
Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells. J Assist Reprod Genet 2016; 33:1395-1403. [PMID: 27475633 DOI: 10.1007/s10815-016-0779-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Despite advances in the composition of defined embryo culture media, co-culture with somatic cells is still used for bovine in vitro embryo production (IVEP) in many laboratories worldwide. Granulosa cells are most often used for this purpose, although recent work suggests that co-culture with stem cells of adult or embryonic origin or their derived biomaterials may improve mouse, cattle, and pig embryo development. MATERIALS AND METHODS In experiment 1, in vitro produced bovine embryos were co-cultured in the presence of two concentrations of bovine adipose tissue-derived mesenchymal cells (b-ATMSCs; 103 and 104 cells/mL), in b-ATMSC preconditioned medium (SOF-Cond), or SOF alone (control). In experiment 2, co-culture with 104 b-ATMSCs/mL was compared to the traditional granulosa cell co-culture system (Gran). RESULTS In experiment 1, co-culture with 104 b-ATMSCs/mL improved blastocyst rates in comparison to conditioned and control media (p < 0.05). Despite that it did not show difference with 103 b-ATMSCs/mL (p = 0.051), group 104 b-ATMSCs/mL yielded higher results of blastocyst production. In experiment 2, when compared to group Gran, co-culture with 104 b-ATMSCs/mL improved not only blastocyst rates but also quality as assessed by increased total cell numbers and mRNA expression levels for POU5F1 and G6PDH (p < 0.05). CONCLUSIONS Co-culture of bovine embryos with b-ATMSCs was more beneficial than the traditional co-culture system with granulosa cells. We speculate that the microenvironmental modulatory potential of MSCs, by means of soluble substances and exosome secretions, could be responsible for the positive effects observed. Further experiments must be done to evaluate if this beneficial effect in vitro also translates to an increase in offspring following embryo transfer. Moreover, this study provides an interesting platform to study the basic requirements during preimplantation embryo development, which, in turn, may aid the improvement of embryo culture protocols in bovine and other species.
Collapse
|
15
|
Abdelbaset-Ismail A, Pedziwiatr D, Suszyńska E, Sluczanowska-Glabowska S, Schneider G, Kakar SS, Ratajczak MZ. Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines. J Ovarian Res 2016; 9:26. [PMID: 27091127 PMCID: PMC4835879 DOI: 10.1186/s13048-016-0235-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Background Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines. Methods In our studies we employed murine embrynic stem cells (ESD3), murine (P19) and human (NTERA-2) teratocarcimona cells lines, human ovarian cancer cells (A2780) as well as purified murine and human purified very small embryonic like stem cells (VSELs). We evaluated expression of Vitamin D3 receptor (VDR) in these cells as well as effect of vitamin D3 exposure on cell proliferation and migration. Results We here provide also more evidence for the role of vitamin D3 in germline-derived malignancies, and this evidence supports the proposal that vitamin D3 treatment inhibits growth and metastatic potential of several germline-derived malignancies. We also found that the ESD3 murine immortalized embryonic stem cell line and normal, pluripotent, germline-marker-positive very small embryonic-like stem cells (VSELs) isolated from adult tissues are stimulated by vitamin D3, which suggests that vitamin D3 affects the earliest stages of embryogenesis. Conclusions We found that however all normal and malignant germ-line derived cells express functional VDR, Vitamin D3 differently affects their proliferation and migration. We postulate that while Vitamin D3 as anticancer drug inhibits proliferation of malignant cells, it may protect normal stem cells that play an important role in development and tissue/organ regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0235-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Ewa Suszyńska
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Sham S Kakar
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Lee YM, Kim TH, Lee JH, Lee WJ, Jeon RH, Jang SJ, Ock SA, Lee SL, Park BW, Rho GJ. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J Ovarian Res 2016; 9:24. [PMID: 27067537 PMCID: PMC4828771 DOI: 10.1186/s13048-016-0233-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Background Recent findings have revealed that the female gonad may have regenerative activity with having germ line stem cells in juveniles and adults. Application of these germ line stem cells could be an alternative therapy for reproductive disorders in regenerative medicine. Methods To enhance the potency of differentiation into oocyte-like cells (OLCs) and folliculogenesis, we overexpressed Oct4 in ovarian stem/stromal cell (OvSCs) and examined the cellular properties related to stemness and self-renewal ability and finally demonstrated the ability of in vitro differentiation and folliculogenesis. Results Ovarian cortex included putative stem cells in terms of AP activity, cell cycle status, cell proliferation, expression of mesenchymal lineage surface markers and pluripotent transcriptional markers. Further, Oct4 transfected OvSCs (Oct4-OvSCs) were enhanced their AP activity and cell proliferation compared to OvSCs. The potential on in vitro differentiation into OLCs and in vivo folliculogenesis was also evaluated in OvSCs and Oct4-OvSCs, respectively. Oct4-OvSCs possessed higher oogenesis potential in vitro than OvSCs, in terms of expression of germ cell markers by RT-PCR and the number of OLCs. When OvSCs and Oct4-OvSCs were xeno-transplanted into infertile mice ovaries, the OvSCs transplantation induced new primary follicle formation and hormonal levels of estradiol and FSH remained similar to that of normal mice. However, Oct4-OvSCs possessed higher ability for folliculogenesis based on inducing developing follicles with thecal layer and granulosa cells and more similar estradiol level to normal mice. Conclusions These findings demonstrated that putative stem cells were present in ovarian cortex and exhibited differentiation ability into OLCs and folliculogenesis in vivo, and Oct4-overexpression enhanced these ability, suggesting their cellular models based on gene therapy in understanding the mechanisms of oogenesis and folliculogenesis, and finally in view of reproductive cell therapy.
Collapse
Affiliation(s)
- Yeon-Mi Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Tae-Ho Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ryoung-Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, 441-706, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
17
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
18
|
Jeon BG, Bharti D, Lee WJ, Jang SJ, Park JS, Jeong GJ, Rho GJ. Comparison of mesenchymal stem cells isolated from various tissues of isogenic mini-pig. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1089323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
19
|
Jeon BG, Jang SJ, Park JS, Subbarao RB, Jeong GJ, Park BW, Rho GJ. Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1087430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Comparative studies on proliferation, molecular markers and differentiation potential of mesenchymal stem cells from various tissues (adipose, bone marrow, ear skin, abdominal skin, and lung) and maintenance of multipotency during serial passages in miniature pig. Res Vet Sci 2015; 100:115-24. [DOI: 10.1016/j.rvsc.2015.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/11/2015] [Accepted: 03/01/2015] [Indexed: 12/16/2022]
|
21
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
22
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M, Broccaioli E, Brini AT. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 2014; 4:148. [PMID: 24330736 PMCID: PMC4054958 DOI: 10.1186/scrt359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/07/2013] [Accepted: 11/26/2013] [Indexed: 01/13/2023] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. Methods ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. Results Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. Conclusions Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.
Collapse
|
24
|
Ratajczak MZ, Marycz K, Poniewierska-Baran A, Fiedorowicz K, Zbucka-Kretowska M, Moniuszko M. Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci 2014; 59:273-80. [PMID: 25170822 DOI: 10.1016/j.advms.2014.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/06/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023]
Abstract
Our current understanding of stem cells suffers from a lack of precision, as the stem cell compartment is a broad continuum between early stages of development and adult postnatal tissues, and it is not fully understood how this transition occurs. The definition of stem cell pluripotency is adapted from embryology and excludes the possibility that some early-development stem cells with pluri- and/or multipotential differentiation potential may reside in postnatal tissues in a dormant state in which they are protected from uncontrolled proliferation and thus do not form teratomas or have the ability to complement blastocyst development. We will discuss the concept that a population of very small embryonic-like stem cells (VSELs) could be a link between early-development stages and adult stem cell compartments and reside in a quiescent state in adult tissues. The epigenetic mechanism identified that changes expression of certain genes involved in insulin/insulin-like growth factor signaling (IIS) in VSELs, on the one hand, keeps these cells quiescent in adult tissues and, on the other hand, provides a novel view of the stem cell compartment, IIS, tissue/organ rejuvenation, aging, and cancerogenesis.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Krzysztof Marycz
- University of Environmental and Life Sciences, Electron Microscopy Laboratory, Wroclaw, Poland; Wroclaw Research Centre EIT+, Wroclaw, Poland
| | - Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
25
|
Park BW, Pan B, Toms D, Huynh E, Byun JH, Lee YM, Shen W, Rho GJ, Li J. Ovarian-cell-like cells from skin stem cells restored estradiol production and estrus cycling in ovariectomized mice. Stem Cells Dev 2014; 23:1647-58. [PMID: 24593690 DOI: 10.1089/scd.2014.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12-14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels like those encountered in premature ovarian failure.
Collapse
Affiliation(s)
- Bong-Wook Park
- 1 Department of Animal and Poultry Science, University of Guelph , Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:702-13. [PMID: 24299281 DOI: 10.1089/scd.2013.0472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.
Collapse
Affiliation(s)
- Malwina Suszynska
- 1 Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.
Collapse
|
28
|
Hausman GJ, Dodson MV. Stromal Vascular Cells and Adipogenesis: Cells within Adipose Depots Regulate Adipogenesis. J Genomics 2013; 1:56-66. [PMID: 25031656 PMCID: PMC4091429 DOI: 10.7150/jgen.3813] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis. For instance, the vasculature and connective tissue collagen matrix develops before overt adipocyte differentiation. Definitive studies of human adipose tissue stem cells (ADSC) provided an understanding of stem cell identity and function. In this regard, a novel vascular stem cell theory proposes that ADSC are a mixed population of vascular stem cells (VSC) with differential potential proportional to the angiogenic potential of the vasculature. The differential potential of VSC can range considerably in a continuous fashion and can include vascular smooth cells, endothelial cells (EC) and adipocytes. These observations are consistent with fetal adipose tissue studies that show location-dependent angiogenic potential ranging from more to less in regards to a predominant presence of EC and developing arterioles before overt adipogenesis.
Collapse
Affiliation(s)
- Gary J Hausman
- 1. Poultry Processing and Swine Physiology Research, Agricultural Research Service, Richard B. Russell Research Center, United States Department of Agriculture, Athens, GA 30605, USA
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
29
|
Dyce PW. Differentiation of newborn mouse skin derived stem cells into germ-like cells in vitro. J Vis Exp 2013:e50486. [PMID: 23892454 DOI: 10.3791/50486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studying germ cell formation and differentiation has traditionally been very difficult due to low cell numbers and their location deep within developing embryos. The availability of a "closed" in vitro based system could prove invaluable for our understanding of gametogenesis. The formation of oocyte-like cells (OLCs) from somatic stem cells, isolated from newborn mouse skin, has been demonstrated and can be visualized in this video protocol. The resulting OLCs express various markers consistent with oocytes such as Oct4 , Vasa , Bmp15, and Scp3. However, they remain unable to undergo maturation or fertilization due to a failure to complete meiosis. This protocol will provide a system that is useful for studying the early stage formation and differentiation of germ cells into more mature gametes. During early differentiation the number of cells expressing Oct4 (potential germ-like cells) reaches ~5%, however currently the formation of OLCs remains relatively inefficient. The protocol is relatively straight forward though special care should be taken to ensure the starting cell population is healthy and at an early passage.
Collapse
Affiliation(s)
- Paul William Dyce
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada.
| |
Collapse
|
30
|
Lee YM, Kumar BM, Lee JH, Lee WJ, Kim TH, Lee SL, Ock SA, Jeon BG, Park BW, Rho GJ. Characterisation and differentiation of porcine ovarian theca-derived multipotent stem cells. Vet J 2013; 197:761-8. [PMID: 23702282 DOI: 10.1016/j.tvjl.2013.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 01/29/2023]
Abstract
In this study, the cellular properties and in vitro differentiation capacity of porcine ovarian theca-derived multipotent stem cells (TSCs) were examined. Isolated TSCs were expanded into a homogeneous population that had a typical fibroblast-shaped morphology and was positive for alkaline phosphatase activity. Cell cycle analysis indicated that TSCs had high proliferative potential. Flow cytometry analysis demonstrated expression of mesenchymal cell surface markers (CD29, CD44 and CD90) on TSCs. Among three pluripotent markers tested (OCT4, NANOG and SOX2), only SOX2 was expressed in TSCs at protein and mRNA levels. Cytochemical staining demonstrated that TSCs differentiated in vitro into osteocytes and adipocytes. Lineage specific transcripts expressed by differentiated osteocytes including osteonectin, osteocalcin and RUNX2. Lineage specific transcripts expressed by differentiated adipocytes included adipocyte fatty acid binding protein-2 (aP2) and peroxisome proliferator-activated receptor-γ2. Following induction in oogenesis media, TSCs exhibited sequential changes in morphology, resembling oocyte-like cells (OLCs), and expressed transcription factors (OCT4, NANOG and SOX2), oocyte-specific marker genes (GDF9B, C-MOS, DAZL, VASA, ZPC, SCP3 and STELLA) and the folliculogenesis marker follicular stimulating hormone receptor. These results indicated that TSCs derived from ovarian follicles are capable of differentiating into mesenchymal lineages and OLCs.
Collapse
Affiliation(s)
- Yeon-Mi Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Park BW, Shen W, Linher-Melville K, Li J. Deleted in azoospermia-like enhances in vitro derived porcine germ cell formation and meiosis. Stem Cells Dev 2012; 22:939-50. [PMID: 23259838 DOI: 10.1089/scd.2012.0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence supporting that deleted in azoospermia-like (DAZL) plays a key role during gametogenesis and meiosis continues to emerge. Our study aimed to determine whether overexpression of DAZL using a lentiviral approach in a somatic stem cell to germ cell in vitro differentiation culture could enhance the formation of primordial germ cell-like cells (PLCs) and oocyte-like cells (OLCs). Introduction of DAZL at the beginning of induced differentiation significantly increased the formation of Fragilis-positive PLCs, which was independent of mitotic proliferation. In addition, mRNA levels of the germ cell markers Oct4, Stella, and Vasa were also higher in the DAZL-transduced group and suppressed when DAZL was knocked down using small interference RNA. At later stages of differentiation, the expression of several genes associated with meiosis, including Scp3, Dmc1, Rec8, and Stra8, was determined to be significantly higher when DAZL was overexpressed, which was abrogated by its knockdown. Exogenous introduction of DAZL also increased the protein levels of SCP3 and VASA, which again was reversed by its knockdown. Although not a common phenomenon in the in vitro differentiation system, the percentage of SCP3-positive cells displaying meiotic chromosome patterns in the DAZL-transduced group was higher than in the control, as was the overall percentage of OLCs that were generated. The introduction of factors such as DAZL into a stem cell-to-germ cell differentiation culture may provide an opportunity to better understand the key genes and their interactions during gametogenesis, also providing a means to enhance the generation of germ cells in vitro.
Collapse
Affiliation(s)
- Bong-Wook Park
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Chen B, Zhang L, Tang J, Feng X, Feng Y, Liang G, Wang L, Feng Y, Li L, De Felici M, Shi Q, Shen W. Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation. Stem Cells Dev 2012; 22:567-80. [PMID: 22978409 DOI: 10.1089/scd.2012.0436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of in vitro culture systems for a premeiotic female germ cell is still low, mostly because of our incomplete understanding of the mechanisms controlling oogenesis and the obvious difficulties in reproducing the complex in vivo environment of such a process under in vitro conditions. Here we explored the possibility of recovering the developmental potential of mouse oocytes generated in vitro from premeiotic germ cells by transplantation under a kidney capsule of adult animals. To this aim, mouse embryonic ovaries of 12.5 days postcoitum cultured in vitro in a serum-free medium for 7 or 14 days, were transplanted beneath the kidney capsule of immunodeficient mice and analyzed after 21 (7+21 group) or 14 days (14+14 group). Cultured ovaries before transplantation showed delayed oocyte meiotic progression and follicle development. Interestingly, grafted ovaries of both groups, especially those of the 7+21 group, seemed able to restore the reproductive cycle of recipients. While the almost complete absence of primordial follicles was observed in grafted ovaries, oocytes from these ovaries showed transcript levels of genes associated to oocyte maturation similar to control. Moreover, the developmental stage of follicles and oocytes of the 7+21 group ovaries were comparable to that of 21 days post partum in vivo ovaries, whereas significant developmental delay were found in the 14+14 group ovaries. Nevertheless, oocytes retrieved from transplanted ovaries of both groups matured (around 80%) and were fertilized in vitro (around 20%-45%). Two-cell embryos from the fertilized oocytes developed to hatching blastocysts (about 50%) or gave rise to healthy live offspring (from 6% to 10%) when transplanted in a host mother. In conclusion, our results indicate that premeiotic female germ cells cultured in vitro up to primordial/primary follicle stages preserve their capability to complete oogenesis and can be fertilized and generate live pups after transplantation into a suitable in vivo environment.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|