1
|
Amniotic stem cells as a source of regenerative medicine to treat female infertility. Hum Cell 2023; 36:15-25. [PMID: 36251241 PMCID: PMC9813167 DOI: 10.1007/s13577-022-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Impaired reproductive health is a worldwide problem that affects the psychological well-being of a society. Despite the technological developments to treat infertility, the global infertility rate is increasing significantly. Many infertility conditions are currently treated using various advanced clinical approaches such as intrauterine semination (IUI), in vitro fertilization (IVF), and intracytoplasmic injection (ICSI). Nonetheless, clinical management of some conditions such as dysfunctional endometrium, premature ovarian failure, and ovarian physiological aging still pose significant challenges. Stem cells based therapeutic strategies have a long-standing history to treat many infertility conditions, but ethical restrictions do not allow the broad-scale utilization of adult mesenchymal stromal/stem cells (MSCs). Easily accessible, placental derived or amniotic stem cells present an invaluable alternative source of non-immunogenic and non-tumorigenic stem cells that possess multilineage potential. Given these characteristics, placental or amniotic stem cells (ASCs) have been investigated for therapeutic purposes to address infertility in the last decade. This study aims to summarize the current standing and progress of human amniotic epithelial stem cells (hAECs), amniotic mesenchymal stem cells (hAMSCs), and amniotic fluid stem cells (hAFSCs) in the field of reproductive medicine. The therapeutic potential of these cells to restore or enhance normal ovarian function and pregnancy outcomes are highlighted in this study.
Collapse
|
2
|
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37:101421. [PMID: 30933723 DOI: 10.1016/j.scr.2019.101421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (I/RI), produced by an initial interruption of organ blood flow and its subsequent restoration, contributes significantly to the pathophysiologies of stroke, myocardial infarction, renal I/RI, intestinal I/RI and liver I/RI, which are major causes of disability (including transplant failure) and even mortality. While the restoration of blood flow is required to restore oxygen and nutrient requirements, reperfusion often triggers local and systemic inflammatory responses and subsequently elevate the ischemic insult where the duration of ischemia determines the magnitude of I/RI damage. I/RI increases vascular leakage, changes transcriptional and cell death programs, drives leukocyte entrapment and inflammation and oxidative stress in tissues. Therapeutic approaches which reduce complications associated with I/RI are desperately needed to address the clinical and economic burden created by I/RI. Stem cells (SC) represent ubiquitous and uncommitted cell populations with the ability to self-renew and differentiate into one or more developmental 'fates'. Like immune cells, stem cells can home to and penetrate I/R-injured tissues, where they can differentiate into target tissues and induce trophic paracrine signaling which suppress injury and maintain tissue functions perturbed by ischemia-reperfusion. This review article summarizes the present use and possible protective mechanisms underlying stem cell protection in diverse forms of ischemia-reperfusion.
Collapse
Affiliation(s)
- M Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - G Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - C J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA.
| |
Collapse
|
3
|
Jevans B, McCann CJ, Thapar N, Burns AJ. Transplanted enteric neural stem cells integrate within the developing chick spinal cord: implications for spinal cord repair. J Anat 2018; 233:592-606. [PMID: 30191559 DOI: 10.1111/joa.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) causes paralysis, multisystem impairment and reduced life expectancy, as yet with no cure. Stem cell therapy can potentially replace lost neurons, promote axonal regeneration and limit scar formation, but an optimal stem cell source has yet to be found. Enteric neural stem cells (ENSC) isolated from the enteric nervous system (ENS) of the gastrointestinal (GI) tract are an attractive source. Here, we used the chick embryo to assess the potential of ENSC to integrate within the developing spinal cord. In vitro, isolated ENSC formed extensive cell connections when co-cultured with spinal cord (SC)-derived cells. Further, qRT-PCR analysis revealed the presence of TuJ1+ neurons, S100+ glia and Sox10+ stem cells within ENSC neurospheres, as well as expression of key neuronal subtype genes, at levels comparable to SC tissue. Following ENSC transplantation to an ablated region of chick embryo SC, donor neurons were found up to 12 days later. These neurons formed bridging connections within the SC injury zone, aligned along the anterior/posterior axis, and were immunopositive for TuJ1. These data provide early proof of principle support for the use of ENSCs for SCI, and encourage further research into their potential for repair.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Cambridge, MA, USA
| |
Collapse
|
4
|
Loukogeorgakis SP, De Coppi P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2018; 35:1663-1673. [PMID: 28009066 DOI: 10.1002/stem.2553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 09/07/2016] [Accepted: 10/01/2016] [Indexed: 12/19/2022]
Abstract
The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673.
Collapse
Affiliation(s)
- Stavros P Loukogeorgakis
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Wang J, Wang F, Wang Z, Li S, Chen L, Liu C, Sun D. Protective effect of GDNF-engineered amniotic fluid-derived stem cells on the renal ischaemia reperfusion injury in vitro. Cell Prolif 2017; 51:e12400. [PMID: 29114949 DOI: 10.1111/cpr.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Amniotic fluid-derived stem cells (AFSCs) possessing multilineage differentiation potential are proposed as a novel and accessible source for cell-based therapy and tissue regeneration. Glial-derived neurotrophic factor (GDNF) has been hypothesized to promote the therapeutic effect of AFSCs on markedly ameliorating renal dysfunction. The aim of this study was to investigate whether AFSCs equipped with GDNF (GDNF-AFSCs) had capabilities of attenuating mouse renal tubular epithelial cells (mRTECs) apoptosis and evaluate its potential mechanisms. MATERIALS AND METHODS A hypoxia-reoxygenation (H/R) model of the mRTECs was established. Injured mRTECs were co-cultured with GDNF-AFSCs in a transwell system. The mRNA expressions of hepatocytes growth factor (HGF) and fibroblast growth factor (bFGF) were detected by qRT-PCR. Changes of intracelluar reactive oxygen species (ROS) and the level of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. The expressions of nitrotyrosine, Gp91-phox, Bax, and Bcl-2 were determined by Western blotting. Cell apoptosis was assayed by flow cytometry, and caspase-3 activity was monitored by caspase-3 activity assay kit. RESULTS Our study revealed that expression of growth factors was increased and oxidative stress was dramatically counteracted in GDNF-AFSCs-treated group. Furthermore, apoptosis induced by H/R injury was inhibited in mRTECs by GDNF-AFSCs. CONCLUSIONS These data indicated that GDNF-AFSCs are beneficial to repairing damaged mRTECs significantly in vitro, which suggests GDNF-AFSCs provide new hopes of innovative interventions in different kidney disease.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengzhen Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Stem cells from amniotic fluid--Potential for regenerative medicine. Best Pract Res Clin Obstet Gynaecol 2015; 31:45-57. [PMID: 26542929 DOI: 10.1016/j.bpobgyn.2015.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Regenerative medicine has recently been established as an emerging field focussing on repair, replacement or regeneration of cells, tissues and whole organs. The significant recent advances in the field have intensified the search for novel sources of stem cells with potential for therapy. Recently, researchers have identified the amniotic fluid as an untapped source of stem cells that are multipotent, possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. Stem cells from the amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumours, which make them an ideal candidate for tissue engineering applications. In addition, their ability to engraft in injured organs and modulate immune and repair responses of host tissues suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases affecting major tissues/organs. This review summarises the evidence on amniotic fluid cells over the past 15 years and explores the potential therapeutic applications of amniotic fluid stem cells and amniotic fluid mesenchymal stem cells.
Collapse
|
7
|
Abstract
Brain injury continues to be one of the leading causes of disability worldwide. Despite decades of research, there is currently no pharmacologically effective treatment for preventing neuronal loss and repairing the brain. As a result, novel therapeutic approaches, such as cell-based therapies, are being actively pursued to repair tissue damage and restore neurological function after injury. In this study, we examined the neuroprotective potential of amniotic fluid (AF) single cell clones, engineered to secrete glial cell derived neurotrophic factor (AF-GDNF), both in vitro and in a surgically induced model of brain injury. Our results show that pre-treatment with GDNF significantly increases cell survival in cultures of AF cells or cortical neurons exposed to hydrogen peroxide. Since improving the efficacy of cell transplantation depends on enhanced graft cell survival, we investigated whether AF-GDNF cells seeded on polyglycolic acid (PGA) scaffolds could enhance graft survival following implantation into the lesion cavity. Encouragingly, the AF-GDNF cells survived longer than control AF cells in serum-free conditions and continued to secrete GDNF both in vitro and following implantation into the injured motor cortex. AF-GDNF implantation in the acute period following injury was sufficient to activate the MAPK/ERK signaling pathway in host neural cells in the peri-lesion area, potentially boosting endogenous neuroprotective pathways. These results were complemented with promising trends in beam walk tasks in AF-GDNF/PGA animals during the 7 day timeframe. Further investigation is required to determine whether significant behavioural improvement can be achieved at a longer timeframe.
Collapse
|
8
|
Jiang G, Di Bernardo J, DeLong CJ, Monteiro da Rocha A, O'Shea KS, Kunisaki SM. Induced Pluripotent Stem Cells from Human Placental Chorion for Perinatal Tissue Engineering Applications. Tissue Eng Part C Methods 2014; 20:731-40. [DOI: 10.1089/ten.tec.2013.0480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Guihua Jiang
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Julie Di Bernardo
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cynthia J. DeLong
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - André Monteiro da Rocha
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - K. Sue O'Shea
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shaun M. Kunisaki
- From the Consortium for Stem Cell Therapies, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Surgery, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, C.S. Mott Children's Hospital, Von Voigtlander Women's Hospital, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8:227. [PMID: 25165432 PMCID: PMC4131212 DOI: 10.3389/fncel.2014.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023] Open
Abstract
Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Gabriel S Portillo-Gonzales
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Daniela Aguirre
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Stephanny Reyes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Diego Lozano
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ike Dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Marianna A Solomita
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| |
Collapse
|
10
|
Peng SY, Chen YH, Chou CJ, Wang YH, Lee HM, Cheng WTK, Shaw SWS, Wu SC. Cell fusion phenomena detected after in utero transplantation of Ds-red-harboring porcine amniotic fluid stem cells into EGFP transgenic mice. Prenat Diagn 2014; 34:487-95. [PMID: 24464940 DOI: 10.1002/pd.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/04/2014] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Amniotic fluid stem cells (AFSCs) are derived from the amniotic fluid of the developing fetus and can give rise to diverse differentiated cells of ectoderm, mesoderm, and endoderm lineages. Intrauterine transplantation is an approach used to cure inherited genetic fetal defects during the gestation period of pregnant dams. Certain disease such as osteogenesis imperfecta was successfully treated in affected fetal mice using this method. However, the donor cell destiny remains uncertain. METHODS The purpose of this study was to investigate the biodistribution and cell fate of Ds-red-harboring porcine AFSCs (Ds-red pAFSCs) after intrauterine transplantation into enhanced green fluorescent protein-harboring fetuses of pregnant mice. Pregnant mice (12.5 days) underwent open laparotomy with intrauterine pAFSC transplantation (5 × 10(4) cells per pup) into fetal peritoneal cavity. RESULTS Three weeks after birth, the mice were sacrificed. Several samples from different organs were obtained for histological examination and flow cytometric analysis. Ds-red pAFSCs migrated most frequently into the intestines. Furthermore, enhanced green fluorescent protein and red fluorescent protein signals were co-expressed in the intestine and liver cells via immunohistochemistry studies. CONCLUSION In utero xenotransplantation of pAFSCs fused with recipient intestinal cells instead of differentiating or maintaining the undifferentiated status in the tissue.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Significant advances in the field of regenerative medicine have intensified the search for novel sources of stem cells with potential for therapy. Although embryonic and adult tissues can be used for the isolation of pluripotent stem cells, significant limitations including ethical concerns, complexity of isolation/culture and tumorigenicity have hindered translation of laboratory findings to clinical practice.
Collapse
|
12
|
Panizzo RA, Gadian DG, Sowden JC, Wells JA, Lythgoe MF, Ferretti P. Monitoring ferumoxide-labelled neural progenitor cells and lesion evolution by magnetic resonance imaging in a model of cell transplantation in cerebral ischaemia. F1000Res 2013; 2:252. [PMID: 24715962 PMCID: PMC3962009 DOI: 10.12688/f1000research.2-252.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 01/05/2023] Open
Abstract
Efficacy of neural stem/progenitor cell (NPC) therapies after cerebral ischaemia could be better evaluated by monitoring
in vivo migration and distribution of cells post-engraftment in parallel with analysis of lesion volume and functional recovery. Magnetic resonance imaging (MRI) is ideally placed to achieve this, but still poses several challenges. We show that combining the ferumoxide MRI contrast agent Endorem with protamine sulphate (FePro) improves iron oxide uptake in cells compared to Endorem alone and is non-toxic. Hence FePro complex is a better contrast agent than Endorem for monitoring NPCs. FePro complex-labelled NPCs proliferated and differentiated normally
in vitro, and upon grafting into the brain 48 hours post-ischaemia they were detected
in vivo by MRI. Imaging over four weeks showed the development of a confounding endogenous hypointense contrast evolution at later timepoints within the lesioned tissue. This was at least partly due to accumulation within the lesion of macrophages and endogenous iron. Neither significant NPC migration, assessed by MRI and histologically, nor a reduction in the ischaemic lesion volume was observed in NPC-grafted brains. Crucially, while MRI provides reliable information on engrafted cell location early after an ischaemic insult, pathophysiological changes to ischaemic lesions can interfere with cellular imaging at later timepoints.
Collapse
Affiliation(s)
- Rachael A Panizzo
- Developmental Biology Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK ; Imaging and Biophysics Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK ; UCL Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, WC1E 6DD, UK
| | - David G Gadian
- Imaging and Biophysics Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Jane C Sowden
- Developmental Biology Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, WC1E 6DD, UK
| | - Mark F Lythgoe
- Imaging and Biophysics Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK ; UCL Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, WC1E 6DD, UK
| | - Patrizia Ferretti
- Developmental Biology Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
13
|
Rennie K, Haukenfrers J, Ribecco-Lutkiewicz M, Ly D, Jezierski A, Smith B, Zurakowski B, Martina M, Gruslin A, Bani-Yaghoub M. Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol 2013; 91:271-86. [DOI: 10.1139/bcb-2013-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a need for improved therapy for acquired brain injury, which has proven resistant to treatment by numerous drugs in clinical trials and continues to represent one of the leading causes of disability worldwide. Research into cell-based therapies for the treatment of brain injury is growing rapidly, but the ideal cell source has yet to be determined. Subpopulations of cells found in amniotic fluid, which is readily obtained during routine amniocentesis, can be easily expanded in culture, have multipotent differentiation capacity, are non-tumourigenic, and avoid the ethical complications associated with embryonic stem cells, making them a promising cell source for therapeutic purposes. Beneficial effects of amniotic fluid cell transplantation have been reported in various models of nervous system injury. However, evidence that amniotic fluid cells can differentiate into mature, functional neurons in vivo and incorporate into the existing circuitry to replace lost or damaged neurons is lacking. The mechanisms by which amniotic fluid cells improve outcomes after experimental nervous system injury remain unclear. However, studies reporting the expression and release of neurotrophic, angiogenic, and immunomodulatory factors by amniotic fluid cells suggest they may provide neuroprotection and (or) stimulate endogenous repair and remodelling processes in the injured nervous system. In this paper, we address recent research related to the neuronal differentiation of amniotic fluid-derived cells, the therapeutic efficacy of these cells in animal models of nervous system injury, and the possible mechanisms mediating the positive outcomes achieved by amniotic fluid cell transplantation.
Collapse
Affiliation(s)
- Kerry Rennie
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Julie Haukenfrers
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Maria Ribecco-Lutkiewicz
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Dao Ly
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Anna Jezierski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Brandon Smith
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Bogdan Zurakowski
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
| | - Marzia Martina
- Synaptic Therapies and Devices, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Andrée Gruslin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, National Research Council Canada, Bldg. M-54, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada
| |
Collapse
|
14
|
Neurorescue effects and stem properties of chorionic villi and amniotic progenitor cells. Neuroscience 2013; 234:158-72. [PMID: 23291343 DOI: 10.1016/j.neuroscience.2012.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022]
Abstract
The capability to integrate into degenerative environment, release neurotrophic cytokines, contrast oxidative stress and an inherent differentiation potential towards siteappropriate phenotypes are considered crucial for the use of stem cells in tissue repair and regeneration. Naïve human chorial villi- (hCVCs) and amniotic fluid- (hAFCs) derived cells, whose properties and potentiality have not been extensively investigated, may represent two novel foetal cell sources for stem cell therapy. We previously described that long-term transplantation of hAFCs in the lateral ventricles of wobbler and healthy mice was feasible and safe. In the present study we examine the in vitro intrinsic stem potential of hCVCs and hAFCs for future therapeutic applications in neurodegenerative disorders. Presence of stem lineages was evaluated assessing the expression pattern of relevant candidate markers by flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry. Release of cytokines that may potentialy sustain endogenous neurogenesis and/or activate neuroprotective pathways was quantified by enzyme-linked immunosorbent assays (ELISAs). We also performed an in vitro neurorescue assay, wherein a neuroblastoma cell line damaged by 6-hydroxydopamine (6-OHDA) was treated with hCVC/hAFC-derived conditioned medium (CM). Naïve hCVCs/hAFCs show a neurogenic/angiogenic predisposition. Both cell types express several specific neural stem/progenitor markers, such as nestin and connexin 43, and release significant amounts of brain-derived neurotrophic factor, as well as vascular endothelial growth factor. hCVC and hAFC populations comprise several interesting cell lineages, including mesenchymal stem cells (MSCs) and cells with neural-like phenotypes. Moreover, although CMs obtained from both cell cultures actively sustained metabolic activity in a 6-OHDA-induced Parkinson's disease (PD) cell model, only hCVC-derived CMs significantly reduced neurotoxin-induced apoptosis. In conclusion, this study demonstrates that naïve hAFCs and hCVCs may enhance cell-recovery following neuronal damage through multiple rescue mechanisms, and may provide a suitable means of stem cell therapy for neurodegenerative disorders including PD.
Collapse
|
15
|
Rennie K, Gruslin A, Hengstschläger M, Pei D, Cai J, Nikaido T, Bani-Yaghoub M. Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012; 2012:721538. [PMID: 23093978 PMCID: PMC3474290 DOI: 10.1155/2012/721538] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022] Open
Abstract
The amniotic membrane (AM) and amniotic fluid (AF) have a long history of use in surgical and prenatal diagnostic applications, respectively. In addition, the discovery of cell populations in AM and AF which are widely accessible, nontumorigenic and capable of differentiating into a variety of cell types has stimulated a flurry of research aimed at characterizing the cells and evaluating their potential utility in regenerative medicine. While a major focus of research has been the use of amniotic membrane and fluid in tissue engineering and cell replacement, AM- and AF-derived cells may also have capabilities in protecting and stimulating the repair of injured tissues via paracrine actions, and acting as vectors for biodelivery of exogenous factors to treat injury and diseases. Much progress has been made since the discovery of AM and AF cells with stem cell characteristics nearly a decade ago, but there remain a number of problematic issues stemming from the inherent heterogeneity of these cells as well as inconsistencies in isolation and culturing methods which must be addressed to advance the field towards the development of cell-based therapies. Here, we provide an overview of the recent progress and future perspectives in the use of AM- and AF-derived cells for therapeutic applications.
Collapse
Affiliation(s)
- Kerry Rennie
- Neurogenesis and Brain Repair, National Research Council-Institute for Biological Sciences, Bldg. M-54, Ottawa, ON, Canada K1A 0R6
| | - Andrée Gruslin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Jinglei Cai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Toshio Nikaido
- Department of Regenerative Medicine, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, National Research Council-Institute for Biological Sciences, Bldg. M-54, Ottawa, ON, Canada K1A 0R6
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
| |
Collapse
|
16
|
Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One 2012; 7:e43779. [PMID: 22912905 PMCID: PMC3422299 DOI: 10.1371/journal.pone.0043779] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/25/2012] [Indexed: 01/11/2023] Open
Abstract
We recently reported isolation of viable rat amniotic fluid-derived stem (AFS) cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo). Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60–63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E) staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG) [2] and the subventricular zone (SVZ) of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Sandra Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Loren E. Glover
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Paula C. Bickford
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Alejandra Jacotte Simancas
- Departamento de Psicobiologia y Metodologia de las Cièncias de la Salud, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marianna A. Solomita
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Ivana Antonucci
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Liborio Stuppia
- Department of Biomedical Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Department of Neuroscience and Imaging, School of Advanced Studies G.d'Annunzio, Chieti University and Stem TeCh Group, Aging Research Center, Chieti- Pescara, Italy
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
17
|
Guasti L, Prasongchean W, Kleftouris G, Mukherjee S, Thrasher AJ, Bulstrode NW, Ferretti P. High plasticity of pediatric adipose tissue-derived stem cells: too much for selective skeletogenic differentiation? Stem Cells Transl Med 2012. [PMID: 23197817 DOI: 10.5966/sctm.2012-0009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cells derived from adipose tissue are a potentially important source for autologous cell therapy and disease modeling, given fat tissue accessibility and abundance. Critical to developing standard protocols for therapeutic use is a thorough understanding of their potential, and whether this is consistent among individuals, hence, could be generally inferred. Such information is still lacking, particularly in children. To address these issues, we have used different methods to establish stem cells from adipose tissue (adipose-derived stem cells [ADSCs], adipose explant dedifferentiated stem cells [AEDSCs]) from several pediatric patients and investigated their phenotype and differentiation potential using monolayer and micromass cultures. We have also addressed the overlooked issue of selective induction of cartilage differentiation. ADSCs/AEDSCs from different patients showed a remarkably similar behavior. Pluripotency markers were detected in these cells, consistent with ease of reprogramming to induced pluripotent stem cells. Significantly, most ADSCs expressed markers of tissue-specific commitment/differentiation, including skeletogenic and neural markers, while maintaining a proliferative, undifferentiated morphology. Exposure to chondrogenic, osteogenic, adipogenic, or neurogenic conditions resulted in morphological differentiation and tissue-specific marker upregulation. These findings suggest that the ADSC "lineage-mixed" phenotype underlies their significant plasticity, which is much higher than that of chondroblasts we studied in parallel. Finally, whereas selective ADSC osteogenic differentiation was observed, chondrogenic induction always resulted in both cartilage and bone formation when a commercial chondrogenic medium was used; however, chondrogenic induction with a transforming growth factor β1-containing medium selectively resulted in cartilage formation. This clearly indicates that careful simultaneous assessment of bone and cartilage differentiation is essential when bioengineering stem cell-derived cartilage for clinical intervention.
Collapse
Affiliation(s)
- Leonardo Guasti
- Developmental Biology Unit, UCL Institute of Child Health, London UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ. Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res 2012; 35:271-80. [PMID: 22370781 DOI: 10.1007/s12272-012-0207-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/21/2022]
Abstract
The stem cells isolated from amniotic fluid present an exciting possible contribution to the field of regenerative medicine and amniotic fluid-derived stem (AFS) cells have significant potential for research and therapeutic applications. AFS cells are multipotent, showing the ability to differentiate into cell types from all three embryonic germ layers. They express both embryonic and adult stem cell markers, expand extensively without feeder cells, double in 36 h, and are not tumorigenic. The AFS cells can be maintained for over 250 population doublings and preserve their telomere length and a normal karyotype. They differentiate easily into specific cell lineages and do not require human embryo tissue for their isolation, thus avoiding the current controversies associated with the use of human embryonic stem (ES) cells. The discovery of the AFS cells has been recent, and a great deal of work remains to be performed on the characterization and use of these cells. This review describes the various differentiated lineages that AFS cells can form and the future of these promising new stem cells in regenerative medicine research.
Collapse
Affiliation(s)
- Sunyoung Joo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|