1
|
Sosa E, Chen D, Rojas EJ, Hennebold JD, Peters KA, Wu Z, Lam TN, Mitchell JM, Sukhwani M, Tailor RC, Meistrich ML, Orwig KE, Shetty G, Clark AT. Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche. Nat Commun 2018; 9:5339. [PMID: 30559363 PMCID: PMC6297357 DOI: 10.1038/s41467-018-07740-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/16/2018] [Indexed: 11/17/2022] Open
Abstract
A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia. Human embryonic stem cells can be differentiated in vitro into primordial germ cell-like cells (PGCLCs) that resemble early primordial germ cells (PGCs). Here the authors transplant PGCLCs generated from rhesus macaque iPSCs into mouse and rhesus macaque seminiferous tubules, which matures these into late PGCs and spermatogonia-like cells.
Collapse
Affiliation(s)
- Enrique Sosa
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Di Chen
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ernesto J Rojas
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Karen A Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhuang Wu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Truong N Lam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer M Mitchell
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ramesh C Tailor
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
SanMiguel JM, Abramowitz LK, Bartolomei MS. Imprinted gene dysregulation in a Tet1 null mouse model is stochastic and variable in the germline and offspring. Development 2018; 145:dev160622. [PMID: 29530881 PMCID: PMC5963867 DOI: 10.1242/dev.160622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/04/2018] [Indexed: 12/15/2022]
Abstract
Imprinted genes are expressed from one parental allele and regulated by differential DNA methylation at imprinting control regions (ICRs). ICRs are reprogrammed in the germline through erasure and re-establishment of DNA methylation. Although much is known about DNA methylation establishment, DNA demethylation is less well understood. Recently, the Ten-Eleven Translocation proteins (TET1-3) have been shown to initiate DNA demethylation, with Tet1-/- mice exhibiting aberrant levels of imprinted gene expression and ICR methylation. Nevertheless, the role of TET1 in demethylating ICRs in the female germline and in controlling allele-specific expression remains unknown. Here, we examined ICR-specific DNA methylation in Tet1-/- germ cells and ascertained whether abnormal ICR methylation impacted imprinted gene expression in F1 hybrid somatic tissues derived from Tet1-/- eggs or sperm. We show that Tet1 deficiency is associated with hypermethylation of a subset of ICRs in germ cells. Moreover, ICRs with defective germline reprogramming exhibit aberrant DNA methylation and biallelic expression of linked imprinted genes in somatic tissues. Thus, we define a discrete set of genomic regions that require TET1 for germline reprogramming and discuss mechanisms for stochastic imprinting defects.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, SCTR 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Lara K Abramowitz
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, SCTR 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marisa S Bartolomei
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, SCTR 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
4
|
Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. Dev Cell 2016; 39:75-86. [PMID: 27618282 DOI: 10.1016/j.devcel.2016.07.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
Remodeling DNA methylation in mammalian genomes can be global, as seen in preimplantation embryos and primordial germ cells (PGCs), or locus specific, which can regulate neighboring gene expression. In PGCs, global and locus-specific DNA demethylation occur in sequential stages, with an initial global decrease in methylated cytosines (stage I) followed by a Tet methylcytosine dioxygenase (Tet)-dependent decrease in methylated cytosines that act at imprinting control regions (ICRs) and meiotic genes (stage II). The purpose of the two-stage mechanism is unclear. Here we show that Dnmt1 preserves DNA methylation through stage I at ICRs and meiotic gene promoters and is required for the pericentromeric enrichment of 5hmC. We discovered that the functional consequence of abrogating two-stage DNA demethylation in PGCs was precocious germline differentiation leading to hypogonadism and infertility. Therefore, bypassing stage-specific DNA demethylation has significant consequences for progenitor germ cell differentiation and the ability to transmit DNA from parent to offspring.
Collapse
|
5
|
Clark AT. DNA methylation remodeling in vitro and in vivo. Curr Opin Genet Dev 2015; 34:82-7. [PMID: 26451496 DOI: 10.1016/j.gde.2015.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022]
Abstract
In mammals, global DNA demethylation in vivo occurs in the pre-implantation embryo and in primordial germ cells (PGCs) where it is hypothesized to create a blank slate or 'tabula rasa' upon which new DNA methylation patterns are written. However, global DNA demethylation in vivo is far from complete with a small number of loci protected from demethylation. Failure to demethylate, or overt demethylation results in compromised differentiation. Recent work has shown that reversion of primed human pluripotent stem cells to the naïve state leads to unbridled DNA demethylation which has unknown consequences on the quality differentiated cells created in vitro. Taken together understanding DNA methylation remodeling is critical for understanding the epigenetic foundations of life, and the quality of stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, United States; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, United States; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
6
|
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation. Stem Cell Reports 2015; 5:337-49. [PMID: 26278040 PMCID: PMC4618453 DOI: 10.1016/j.stemcr.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However, when removed from their embryonic niche, PGCs undergo reversion to pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) is variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. Here we show that reverting PGCs to EGCs involved stable ICC methylation erasure at Snrpn, Igf2r, and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes erasure followed by de novo re-methylation. PGCs differentiated in vitro from ESCs completed Snrpn ICC erasure. However, the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC was abnormally hypermethylated in ESCs, this is not erased in PGCs differentiated from ESCs. Therefore, launching PGC differentiation from ESC lines with appropriately methylated ICCs is critical to the generation of germline cells that recapitulate endogenous ICC erasure.
Collapse
|