1
|
Song Y, Liu H, Pan S, Xiang X, Ye M, Zhu X. Emerging role of mesenchymal stromal cells in gynecologic cancer therapy. Stem Cell Res Ther 2023; 14:347. [PMID: 38049868 PMCID: PMC10696729 DOI: 10.1186/s13287-023-03585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) show considerable promise in regenerative medicine with superior anti-fibrotic, immunomodulatory, and angiogenic functions. More recently, discovered with the tumor tropism, MSCs have been exploited as the basis of targeted cancer therapy. In this scenario, MSCs can directly home to tumor tissues and play anti-tumor properties. In addition, MSCs, MSC-derived exosomes and MSC-derived membranes are often developed as carriers for precisely delivering cytotoxic agents to cancer sites, including chemotherapeutic drugs, therapeutic genes, or oncolytic viruses. However, it has revealed the tumorigenic risk of MSCs as an important component within the tumor microenvironment, hampering the translation of MSC-based cancer therapies into clinical settings. Therefore, in this review, we introduce the specific tumor-tropic ability of MSCs and underlying mechanisms. We also summarize the current application of MSC-based therapeutic approaches in treating gynecologic cancers, mainly including cervical, ovarian, and endometrial cancers. Moreover, we discuss the main challenges that the current MSC-based cancer therapies are facing.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xinli Xiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
2
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|
3
|
Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021; 10:1378. [PMID: 34204869 PMCID: PMC8227575 DOI: 10.3390/cells10061378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.
Collapse
Affiliation(s)
- Peyton Gibler
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Jeffrey Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katie Hamel
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Emma Rogers
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Michael Henderson
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Spencer Olesky
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Pawitan JA, Bui TA, Mubarok W, Antarianto RD, Nurhayati RW, Dilogo IH, Oceandy D. Enhancement of the Therapeutic Capacity of Mesenchymal Stem Cells by Genetic Modification: A Systematic Review. Front Cell Dev Biol 2020; 8:587776. [PMID: 33195245 PMCID: PMC7661472 DOI: 10.3389/fcell.2020.587776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background The therapeutic capacity of mesenchymal stem cells (also known as mesenchymal stromal cells/MSCs) depends on their ability to respond to the need of the damaged tissue by secreting beneficial paracrine factors. MSCs can be genetically engineered to express certain beneficial factors. The aim of this systematic review is to compile and analyze published scientific literatures that report the use of engineered MSCs for the treatment of various diseases/conditions, to discuss the mechanisms of action, and to assess the efficacy of engineered MSC treatment. Methods We retrieved all published studies in PubMed/MEDLINE and Cochrane Library on July 27, 2019, without time restriction using the following keywords: “engineered MSC” and “therapy” or “manipulated MSC” and “therapy.” In addition, relevant articles that were found during full text search were added. We identified 85 articles that were reviewed in this paper. Results Of the 85 articles reviewed, 51 studies reported the use of engineered MSCs to treat tumor/cancer/malignancy/metastasis, whereas the other 34 studies tested engineered MSCs in treating non-tumor conditions. Most of the studies reported the use of MSCs in animal models, with only one study reporting a trial in human subjects. Thirty nine studies showed that the expression of beneficial paracrine factors would significantly enhance the therapeutic effects of the MSCs, whereas thirty three studies showed moderate effects, and one study in humans reported no effect. The mechanisms of action for MSC-based cancer treatment include the expression of “suicide genes,” induction of tumor cell apoptosis, and delivery of cytokines to induce an immune response against cancer cells. In the context of the treatment of non-cancerous diseases, the mechanism described in the reviewed papers included the expression of angiogenic, osteogenic, and growth factors. Conclusion The therapeutic capacity of MSCs can be enhanced by inducing the expression of certain paracrine factors by genetic modification. Genetically engineered MSCs have been used successfully in various animal models of diseases. However, the results should be interpreted cautiously because animal models might not perfectly represent real human diseases. Therefore, further studies are needed to explore the translational potential of genetically engineered MSCs.
Collapse
Affiliation(s)
- Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Thuy Anh Bui
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Radiana Dhewayani Antarianto
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Retno Wahyu Nurhayati
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Orthopaedic and Traumatology, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom.,Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
6
|
Cytotoxic response of 5-fluorouracil-resistant cells to gene- and cell-directed enzyme/prodrug treatment. Cancer Gene Ther 2018; 25:285-299. [DOI: 10.1038/s41417-018-0030-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
|
7
|
Altanerova U, Babincova M, Babinec P, Benejova K, Jakubechova J, Altanerova V, Zduriencikova M, Repiska V, Altaner C. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine 2017; 12:7923-7936. [PMID: 29138559 PMCID: PMC5667789 DOI: 10.2147/ijn.s145096] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Magnetic hyperthermia, or the heating of tissues using magnetic materials, is a promising approach for treating cancer. We found that human mesenchymal stem cells (MSCs) isolated from various tissues and MSCs expressing the yeast cytosine deaminase∷uracil phosphoribosyl transferase suicide fusion gene (yCD∷UPRT) can be labeled with Venofer, an iron oxide carbohydrate nanoparticle. Venofer labeling did not affect cell proliferation or the ability to home to tumors. All Venofer-labeled MSCs released exosomes that contained iron oxide. Furthermore, these exosomes were efficiently endocytosed by tumor cells. Exosomes from Venofer-labeled MSCs expressing the yCD∷UPRT gene in the presence of the prodrug 5-fluorocytosine inhibited tumor growth in a dose-dependent fashion. The treated tumor cells were also effectively ablated following induction of hyperthermia using an external alternating magnetic field. Cumulatively, we found that magnetic nanoparticles packaged into MSC exosomes are efficiently endocytosed by tumor cells, facilitating targeted tumor cell ablation via magnetically induced hyperthermia.
Collapse
Affiliation(s)
- U Altanerova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - M Babincova
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - P Babinec
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - K Benejova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - J Jakubechova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - V Altanerova
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia
| | - M Zduriencikova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - V Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - C Altaner
- Stem Cell Preparation Department, St Elisabeth Cancer Institute, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, Sun X, Li Y, Li Y, Qian M, Sun Y. Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 2017; 9:674-692. [PMID: 28929459 PMCID: PMC6053350 DOI: 10.1007/s13238-017-0466-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Development of ovarian cancer involves the co-evolution of neoplastic cells together with the adjacent microenvironment. Steps of malignant progression including primary tumor outgrowth, therapeutic resistance, and distant metastasis are not determined solely by genetic alterations in ovarian cancer cells, but considerably shaped by the fitness advantage conferred by benign components in the ovarian stroma. As the dynamic cancer topography varies drastically during disease progression, heterologous cell types within the tumor microenvironment (TME) can actively determine the pathological track of ovarian cancer. Resembling many other solid tumor types, ovarian malignancy is nurtured by a TME whose dark side may have been overlooked, rather than overestimated. Further, harnessing breakthrough and targeting cures in human ovarian cancer requires insightful understanding of the merits and drawbacks of current treatment modalities, which mainly target transformed cells. Thus, designing novel and precise strategies that both eliminate cancer cells and manipulate the TME is increasingly recognized as a rational avenue to improve therapeutic outcome and prevent disease deterioration of ovarian cancer patients.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaqian Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Libin Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaochen Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
|
10
|
Kucerova L, Durinikova E, Toro L, Cihova M, Miklikova S, Poturnajova M, Kozovska Z, Matuskova M. Targeted antitumor therapy mediated by prodrug-activating mesenchymal stromal cells. Cancer Lett 2017; 408:1-9. [PMID: 28838843 DOI: 10.1016/j.canlet.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) were introduced as tumor-targeted vehicles suitable for delivery of the gene-directed enzyme/prodrug therapy more than 10 years ago. Over these years key properties of tumor cells and MSCs, which are crucial for the treatment efficiency, were examined; and there are some critical issues to be considered for the maximum antitumor effect. Moreover, engineered MSCs expressing enzymes capable of activating non-toxic prodrugs achieved long-term curative effect even in metastatic and hard-to-treat tumor types in pre-clinical scenario(s). These gene-modified MSCs are termed prodrug-activating MSCs throughout the text and represent promising approach for further clinical application. This review summarizes major determinants to be considered for the application of the prodrug-activating MSCs in antitumor therapy in order to maximize therapeutic efficiency.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Erika Durinikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Toro
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Svetlana Miklikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Poturnajova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Kozovska
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslava Matuskova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Hossain MM, Murali MR, Kamarul T. Genetically modified mesenchymal stem/stromal cells transfected with adiponectin gene can stably secrete adiponectin. Life Sci 2017; 182:50-56. [PMID: 28606849 DOI: 10.1016/j.lfs.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
AIMS Mesenchymal stem/stromal cells (MSCs) hold promises for the treatment of diverse diseases and regeneration of injured tissues. Genetic modification of MSCs through gene delivery might enhance their therapeutic potential. Adiponectin has been appeared as a potential biomarker for predicting various diseases. Plasma adiponectin levels are negatively correlated with various metabolic and vascular diseases and supplementation of exogenous adiponectin ameliorates the diseases. This study aims to develop adiponectin secreting genetically modified MSCs (GM-MSCs) as a potent strategic tool to complement endogenous adiponectin for the treatment of adiponectin deficiency diseases. MAIN METHODS Human bone marrow derived MSCs were isolated, expanded in vitro and transfected with adiponectin gene containing plasmid vector. Total RNA was extracted and cDNA was prepared by reverse transcription polymerase chain reaction (RT-PCR). The expression of adiponectin gene and protein in GM-MSCs was analyzed by PCR and Western blotting respectively. The secretion of adiponectin protein from GM-MSCs was analyzed by enzyme-linked immunosorbent assay. KEY FINDINGS The expression of adiponectin gene and plasmid DNA was detected in GM-MSCs but not in control group of MSCs. Adiponectin gene expression was detected in GM-MSCs at 2, 7, 14, 21 and 28days after transfection. Western blotting analysis revealed the expression of adiponectin protein only in GM-MSCs. The GM-MSCs stably secreted adiponectin protein into culture media at least for 4weeks. SIGNIFICANCE GM-MSCs express and secret adiponectin protein. Therefore, these adiponectin secreting GM-MSCs could be instrumental for the supplementation of adiponectin in the treatment of adiponectin deficiency related diseases.
Collapse
Affiliation(s)
- Md Murad Hossain
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Director, University Malay Medical Center, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|