1
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Bazzano D, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. Proc Natl Acad Sci U S A 2024; 121:e2404775121. [PMID: 39471215 DOI: 10.1073/pnas.2404775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates every menstrual cycle or upon tissue damage. Here, we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of five healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells, representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and messenger Ribonucleic Acid (mRNA) patterns of literature-based markers as a shared community resource. We identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type and potential cross-lineage multipotent stromal progenitors that may replenish the epithelial, stromal, and endothelial compartments. Furthermore, many cell types and subtypes exhibit shifts in cell number and transcriptomes across different phases of the menstrual cycle. Finally, comparisons between premenopausal, postpartum, and postmenopausal samples revealed substantial alterations in tissue composition, particularly in the proportions of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders.
Collapse
Affiliation(s)
- Nicole D Ulrich
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Alex Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Yu-Chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Dominic Bazzano
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - D Ford Hannum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Ariella Shikanov
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Erica E Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Saher Sue Hammoud
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583985. [PMID: 38559249 PMCID: PMC10979868 DOI: 10.1101/2024.03.07.583985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.
Collapse
|
3
|
Ongsricharoenbhorn S, Kupittayanant P, Thumanu K, Eumkeb G, Chanlun S, Papirom P, Wray S, Kupittayanant S. Effects of Heliotropium indicum L. on Uterine Involution and Its Underlying Mechanisms: an in vivo and in vitro Study. Chin J Integr Med 2023; 29:980-988. [PMID: 37608039 DOI: 10.1007/s11655-023-3742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE To investigate the effect of Heliotropium indicum L. (H. indicum L.) on uterine involution and its underlying mechanisms in both in vivo and in vitro study. METHODS For in vivo studies, postpartum rats were randomly divided into 2 groups (n=24 for each): control group and treated group which were orally and daily administered with ethanolic extract of H. indicum L. (250 mg/kg body weight) until day 5 of postpartum. Uteri were collected for analysis of weight, cross-sectional area, collagen cross-sectional area, and collagen content on postpartum day 1, 3, and 5 (n=8 for each) from both groups. Blood samples were collected for hepatotoxicity and 17β-estradiol (E2) measurement. For in vitro studies, the extract effects on uterine contraction at half maximum effective concentration of 2.50 mg/mL were studied in organ bath system for at least 20 min. RESULTS Uterine parameters were significantly decreased after treated with extract of H. indicum L. (P<0.05). H. indicum L. extract significantly accelerated the reduction of those parameters and significantly decreased E2 (P<0.05). The extract facilitated uterine involution with no hepatotoxicity. H. indicum L. extract significantly stimulated uterine contraction (P<0.05) and synergized with oxytocin, prostaglandin and its precursor, linoleic acid. By investigating the different sequencing of the extract with the additional stimulants (added before or after), the two showed antagonistic effects, but still showed potentiated force when compared with control (without the stimulants). CONCLUSIONS The underlying mechanisms by which H. indicum L. facilitated uterine involution might be due to reducing E2 which induces collagenase activity, leading to decreases in uterine weight and size and stimulating uterine contraction. Our study provides new findings for future drug development for facilitating uterine involution with H. indicum L.
Collapse
Affiliation(s)
- Sayah Ongsricharoenbhorn
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakanit Kupittayanant
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Suthida Chanlun
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pittaya Papirom
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Susan Wray
- Department of Women's and Children's Health, Harris-Wellbeing Preterm Birth Centre, University of Liverpool, Liverpool, L8 7SS, UK
| | - Sajeera Kupittayanant
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
4
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-rich intestinal protein 1 is a novel surface marker for human myometrial stem/progenitor cells. Commun Biol 2023; 6:686. [PMID: 37400623 DOI: 10.1038/s42003-023-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
5
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-Rich Intestinal Protein 1 is a Novel Surface Marker for Myometrial Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529273. [PMID: 36993447 PMCID: PMC10054937 DOI: 10.1101/2023.02.20.529273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| |
Collapse
|
6
|
Kriseman ML, Tang S, Liao Z, Jiang P, Parks SE, Cope DI, Yuan F, Chen F, Masand RP, Castro PD, Ittmann MM, Creighton CJ, Tan Z, Monsivais D. SMAD2/3 signaling in the uterine epithelium controls endometrial cell homeostasis and regeneration. Commun Biol 2023; 6:261. [PMID: 36906706 PMCID: PMC10008566 DOI: 10.1038/s42003-023-04619-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The regenerative potential of the endometrium is attributed to endometrial stem cells; however, the signaling pathways controlling its regenerative potential remain obscure. In this study, genetic mouse models and endometrial organoids are used to demonstrate that SMAD2/3 signaling controls endometrial regeneration and differentiation. Mice with conditional deletion of SMAD2/3 in the uterine epithelium using Lactoferrin-iCre develop endometrial hyperplasia at 12-weeks and metastatic uterine tumors by 9-months of age. Mechanistic studies in endometrial organoids determine that genetic or pharmacological inhibition of SMAD2/3 signaling disrupts organoid morphology, increases the glandular and secretory cell markers, FOXA2 and MUC1, and alters the genome-wide distribution of SMAD4. Transcriptomic profiling of the organoids reveals elevated pathways involved in stem cell regeneration and differentiation such as the bone morphogenetic protein (BMP) and retinoic acid signaling (RA) pathways. Therefore, TGFβ family signaling via SMAD2/3 controls signaling networks which are integral for endometrial cell regeneration and differentiation.
Collapse
Affiliation(s)
- Maya L Kriseman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sydney E Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ramya P Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia D Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Guo Q, Chang Y, Li J, Zhou C, Huang R, Yang X, Liu G, Liang X. Regenerative Effects of Locally or Intra-Arterially Administered BMSCs on the Thin Endometrium. Front Bioeng Biotechnol 2022; 10:735465. [PMID: 35547156 PMCID: PMC9081369 DOI: 10.3389/fbioe.2022.735465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Stem cell–based therapy plays a pivotal role in the regeneration of damaged endometrium. Previous studies have demonstrated the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) through diverse administration ways. However, the homing, survival, and differentiation potential of these differently administered BMSCs are poorly defined, and the best route of administration is not well-defined. Herein, we aim to compare the engraftment, retaining time, and therapeutic efficiency of differently administered BMSCs. To achieve this, GFP/Luc-labeled BMSCs administered in two modes were assessed in a thin endometrium rat model: either into the damaged horns directly or through the ipsilateral iliac artery. The retaining time and hemi-quantitative distribution were evaluated by in vivo bioluminescence imaging and immunohistological analysis. Locally administered BMSCs were strongly detected in the abdomen at the first 4 days post treatment but underwent a rapid decrease in luminescent signal afterward and were rarely found 28 days after treatment. In contrast, the retaining time of BMSCs injected through the iliac artery was longer, reflected by more GFP-positive cells detected in the uterine section 28 days post treatment. Differentiation toward endometrial stromal cells was observed. Both routes of administration contributed to the restoration of the damaged endometrium, showing a comparable increase in the endometrial thickness and a decrease in fibrosis. However, more importantly, higher expression of LIF and VEGF, better recruitment, and longer retainment were found in the intra-arterial administration, contributing to the establishment of the optimal administration mode in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guihua Liu
- *Correspondence: Guihua Liu, ; Xiaoyan Liang,
| | | |
Collapse
|
8
|
Tal R, Kisa J, Abuwala N, Kliman HJ, Shaikh S, Chen AY, Lyu F, Taylor HS. Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells 2021; 39:1489-1505. [PMID: 34224633 PMCID: PMC9313624 DOI: 10.1002/stem.3431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/11/2022]
Abstract
Endometrial stem/progenitor cells play a role in postpartum uterine tissue regeneration, but the underlying mechanisms are poorly understood. While circulating bone marrow (BM)-derived cells (BMDCs) contribute to nonhematopoietic endometrial cells, the contribution of BMDCs to postpartum uterus remodeling is unknown. We investigated the contribution of BMDCs to the postpartum uterus using 5-fluorouracil-based nongonadotoxic BM transplant from green fluorescent protein (GFP) donors into wild-type C57BL/6J female mice. Flow cytometry showed an influx of GFP+ cells to the uterus immediately postpartum accounting for 28.7% of total uterine cells, followed by a rapid decrease to prepregnancy levels. The majority of uterine GFP+ cells were CD45+ leukocytes, and the proportion of nonhematopoietic CD45-GFP+ cells peaked on postpartum day (PPD) 1 (17.5%). Immunofluorescence colocalization of GFP with CD45 pan-leukocyte and F4/80 macrophage markers corroborated these findings. GFP+ cells were found mostly in subepithelial stromal location. Importantly, GFP+ cytokeratin-positive epithelial cells were found within the luminal epithelium exclusively on PPD1, demonstrating direct contribution to postpartum re-epithelialization. A subset (3.2%) of GFP+ cells were CD31+CD45- endothelial cells, and found integrated within blood vessel endothelium. Notably, BM-derived GFP+ cells demonstrated preferential proliferation (PCNA+) and apoptosis (TUNEL+) on PPD1 vs resident GFP- cells, suggesting an active role for BMDCs in rapid tissue turnover. Moreover, GFP+ cells gradually acquired cell senescence together with decreased proliferation throughout the postpartum. In conclusion, BM-derived progenitors were found to have a novel nonhematopoietic cellular contribution to postpartum uterus remodeling. This contribution may have an important functional role in physiological as well as pathological postpartum endometrial regeneration.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacqueline Kisa
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alice Y Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Abuwala N, Tal R. Endometrial stem cells: origin, biological function, and therapeutic applications for reproductive disorders. Curr Opin Obstet Gynecol 2021; 33:232-240. [PMID: 33896919 PMCID: PMC9313610 DOI: 10.1097/gco.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Endometrial stem cells (ESCs) are multipotent cells that are thought to originate locally in the endometrium as well as in the bone marrow (BM). They have remarkable plasticity and hold promise as an autologous source for regenerative medicine. This review focuses on recent studies that have advanced our understanding of the biology and function of ESCs and BM-derived stem cells (BMDSCs) as related to physiological reproductive processes and pathologies. Moreover, it reviews recent data on potential therapeutic applications of stem cells to endometrial disorders that lead to reproductive failure. RECENT FINDINGS Growing evidence from basic and preclinical studies suggests that ESCs participate in endometrial tissue regeneration and repair. Recent evidence also suggests that ESCs and BMDSCs play important roles in physiological reproductive functions including decidualization, implantation, pregnancy maintenance, and postpartum uterine remodeling. Initial preclinical and clinical studies with ESCs and BMDSCs suggest they have the potential to provide new therapies for various endometrial disorders associated with reproductive failure. SUMMARY Uterine ESCs and BMDSCs appear to play an important biological role in reproductive success and failure, and have the potential to become treatment targets for reproductive diseases including recurrent implantation failure, thin endometrium, Asherman, and recurrent pregnancy loss.
Collapse
Affiliation(s)
- Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Min J, Lu N, Huang S, Chai X, Wang S, Peng L, Wang J. Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: A comparison between intrauterine adhesion patients and healthy women. Am J Reprod Immunol 2020; 85:e13379. [PMID: 33206449 DOI: 10.1111/aji.13379] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Intrauterine adhesion (IUA) is a uterine disorder with partial or total obstruction of the uterine cavity and/or the cervical canal primarily caused by intrauterine operations and infections. It is the most common cause of uterine infertility and recurrent abortion. However, the reasons for endometrium repair disorders in patients with IUA are still unclear. While increasing evidence demonstrates that endometrial mesenchymal stem/stromal cells (EMSCs) contribute to the regeneration and repair of endometrium, the roles of EMSCs in the pathogenesis of IUA have not been reported. METHODS AND STUDY We investigated the differences of phenotype and biological characteristics between EMSCs from women with IUA and healthy women. Firstly, the fibrosis of endometrium were measured by immunohistochemistry and Masson staining. Second, we used immunofluorescence to detect the location of EMSCs in endometrial tissue, and the proportion of CD146+ CD140b+ in the two groups was compared by flow cytometry. Then, plate colony formation experiment, CCK-8 assay, flow cytometry, would-healing assay, and transwell invasion experiment were used to compare the cloning ability, proliferation, cell cycle, migration and invasion capabilities respectively. Finally, we compared the potential angiogenesis and immunosuppression capabilities. RESULTS Our results showed that there were fewer CD146+ CD140b+ cells in patients with IUA, and the clone-forming, migration, invasion, angiogenic and immunosuppressive abilities of the EMSCs of patients with IUA were significantly decreased compared with those of healthy women. CONCLUSION There are some differences between the EMSCs of IUA patients and healthy women, which may be related to the occurrence of IUA and dysfunction of endometrium.
Collapse
Affiliation(s)
- Jiali Min
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Na Lu
- Reproductive and Genetic Hospital of CITIC Xiangya, Changsha, China
| | - Shengjian Huang
- Hunan Guangxiu Hi-tech Life Technology Co., Ltd., Changsha, China
| | - Xiahua Chai
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Susu Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lin Peng
- National Engineering and Research Center of Human Stem Cell, Changsha, China.,Guangxiu Hospital Hunan Normal University, Changsha, China
| | - Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC Xiangya, Changsha, China.,Hunan Guangxiu Hi-tech Life Technology Co., Ltd., Changsha, China
| |
Collapse
|
11
|
Tal A, Tal R, Pluchino N, Taylor HS. Endometrial cells contribute to preexisting endometriosis lesions in a mouse model of retrograde menstruation†. Biol Reprod 2020; 100:1453-1460. [PMID: 30869747 DOI: 10.1093/biolre/ioz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is characterized by extrauterine growth of endometrial tissue accompanied by adverse clinical manifestations including chronic pelvic pain and infertility. Retrograde menstruation, the efflux of endometrium into the peritoneal cavity during menstruation, is believed to contribute to implantation of endometrial tissue and formation of endometriotic lesions at ectopic sites. While it is established through various rodent and nonhuman primate models that endometrial tissue fragments, as well as nondissociated stroma and glands, are capable of seeding endometriosis in a manner mimicking retrograde menstruation, the ability of single endometrial cells to participate in endometriotic processes has not been evaluated due to their failure to establish macroscopic endometriosis. We designed a model by which this capacity can be assessed by examining the integration of individual uterine cells into existing endometriosis lesions in mice. Endometriosis was induced in C57BL/6J female mice followed by intraperitoneal injection of GFP-labeled single uterine cells. We found that freshly introduced uterine cells can successfully integrate and contribute to various cell populations within the lesion. Strikingly, these cells also appeared to contribute to neo-angiogenesis and inflammatory processes within the lesion, which are commonly thought of as host-driven phenomena. Our findings underscore the potential of individual uterine cells to continuously expand lesions and participate in the progression of endometriosis. This model of retrograde menstruation may therefore be used to study processes involved in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Aya Tal
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Reshef Tal
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signal 2019; 15:225-236. [PMID: 31123897 DOI: 10.1007/s11302-019-09656-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.
Collapse
|