1
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
2
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024; 80:12-23. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
3
|
Zhan J, Huang L, Niu L, Lu W, Sun C, Liu S, Ding Z, Li E. Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism. Cell Commun Signal 2024; 22:387. [PMID: 39090604 PMCID: PMC11292923 DOI: 10.1186/s12964-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Liyan Niu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenhui Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Chengpeng Sun
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
4
|
Marín-Aquino LA, Mora-García MDL, Moreno-Lafont MC, García-Rocha R, Montesinos-Montesinos JJ, López-Santiago R, Sánchez-Torres LE, Torres-Pineda DB, Weiss-Steider B, Hernández-Montes J, Don-López CA, Monroy-García A. Adenosine increases PD-L1 expression in mesenchymal stromal cells derived from cervical cancer through its interaction with A 2AR/A 2BR and the production of TGF-β1. Cell Biochem Funct 2024; 42:e4010. [PMID: 38613217 DOI: 10.1002/cbf.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-β1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-β1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-β1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-β1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-β1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-β1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-β1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCyT, Ciudad de México, México
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ruben López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Laboratorio de Inmunología de los microorganismos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| |
Collapse
|
5
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
6
|
Giraulo C, Turiello R, Orlando L, Leonardelli S, Landsberg J, Belvedere R, Rolshoven G, Müller CE, Hölzel M, Morello S. The CD73 is induced by TGF-β1 triggered by nutrient deprivation and highly expressed in dedifferentiated human melanoma. Biomed Pharmacother 2023; 165:115225. [PMID: 37517292 DOI: 10.1016/j.biopha.2023.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
CD73 is the key enzyme in the generation of extracellular adenosine, a mediator involved in tumor progression, tumor immune escape and resistance to anti-cancer therapeutics. Microenvironmental conditions influence the expression of CD73 in tumor cells. However how CD73 expression and activity is regulated in a stress condition of lower nutrient availability are largely unknown. Our results indicate that serum starvation leads to a marked up-regulation of CD73 expression on A375 melanoma cells in a time-dependent manner. The cell-surface expression of CD73 is associated with an increased release of TGF-β1 by starved cells. Blockade of TGF-β1 receptors or TGFβ/SMAD3 signaling pathway significantly reduce the expression of CD73 induced by starvation. Treatment of cells with rTGF-β1 up-regulates the expression of CD73 in a concentration-dependent manner, confirming the role of this pathway in regulating CD73 in melanoma A375 cells. The increased expression of CD73 is associated with enhanced AMPase activity, which is selectively reduced by inhibitors of CD73 activity, APCP and PSB-12489. Pharmacological blockade of CD73 significantly inhibits invasion of melanoma cells in a transwell system. Furthermore, using multiplex immunofluorescence imaging we found that, within human melanoma metastases, tumor cells at the dedifferentiated stage show the highest CD73 protein expression. In summary, our data provide new insights into the mechanism regulating the expression/activity of CD73 in melanoma cells in a condition of lower availability of nutrients, which is a common feature of the tumor microenvironment. Within human metastatic melanoma tissues elevated protein expression of CD73 is associated with an invasive-like phenotype.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Roberta Turiello
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Lavinia Orlando
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, Italy
| | - Sonia Leonardelli
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | | | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn (UKB), University of Bonn, Bonn, Germany
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
7
|
Cortés-Morales VA, Chávez-Sánchez L, Rocha-Zavaleta L, Espíndola-Garibay S, Monroy-García A, Castro-Manrreza ME, Fajardo-Orduña GR, Apresa-García T, Gutiérrez-de la Barrera M, Mayani H, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Cervical Cancer Promote M2 Macrophage Polarization. Cells 2023; 12:cells12071047. [PMID: 37048119 PMCID: PMC10093665 DOI: 10.3390/cells12071047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages with the M2 phenotype promote tumor development through the immunosuppression of antitumor immunity. We previously demonstrated the presence of mesenchymal stem/stromal cells (MSCs) in cervical cancer (CeCa-MSCs), suggesting an immune protective capacity in tumors, but to date, their effect in modulating macrophage polarization remains unknown. In this study, we compared the capacities of MSCs from normal cervix (NCx) and CeCa to promote M2 macrophage polarization in a coculture system. Our results demonstrated that CeCa-MSCs, in contrast to NCx-MSCs, significantly decreased M1 macrophage cell surface marker expression (HLA-DR, CD80, CD86) and increased M2 macrophage expression (CD14, CD163, CD206, Arg1) in cytokine-induced CD14+ monocytes toward M1- or M2-polarized macrophages. Interestingly, compared with NCx-MSCs, in M2 macrophages generated from CeCa-MSC cocultures, we observed an increase in the percentage of phagocytic cells, in the intracellular production of IL-10 and IDO, the capacity to decrease T cell proliferation and for the generation of CD4+CD25+FoxP3+ Tregs. Importantly, this capacity to promote M2 macrophage polarization was correlated with the intracellular expression of macrophage colony-stimulating factor (M-CSF) and upregulation of IL-10 in CeCa-MSCs. Furthermore, the presence of M2 macrophages was correlated with the increased production of IL-10 and IL-1RA anti-inflammatory molecules. Our in vitro results indicate that CeCa-MSCs, in contrast to NCx-MSCs, display an increased M2-macrophage polarization potential and suggest a role of CeCa-MSCs in antitumor immunity.
Collapse
|
8
|
Xing Y, Ren ZQ, Jin R, Liu L, Pei JP, Yu K. Therapeutic efficacy and mechanism of CD73-TGFβ dual-blockade in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin 2022; 43:2410-2418. [PMID: 35082394 PMCID: PMC9433380 DOI: 10.1038/s41401-021-00840-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Although chemotherapy and recently approved immunotherapies have improved treatment of triple-negative breast cancer (TNBC), the clinical outcome for this deadly disease remains unsatisfactory. We found that both cluster of differentiation 73 (CD73) and transforming growth factor (TGF)β were elevated in TNBC and correlated with the epithelial-mesenchymal transition (EMT), fibrotic stroma, an immune-tolerant tumor environment, and poor prognosis. To explore the efficacy of CD73-TGFβ dual-blockade, we generated a bifunctional anti-CD73-TGFβ construct consisting of the CD73 antibody MEDI9447 fused with the TGFβRII extracellular-domain (termed MEDI-TGFβR). MEDI-TGFβR retained full and simultaneous blocking efficiency for CD73 and TGFβ. Compared with MEDI9447 activity alone, MEDI-TGFβR demonstrated superior inhibitory activity against CD73-dependent cell migration and the EMT in CD73-high TNBC cells and effectively reduced lung metastasis in a syngeneic mouse model of TNBC. Mechanistically, the CD73-TGFβ dual-blockade reverted the EMT and stromal fibrosis and induced tumor cell death, which was accompanied by the accumulation of M1-macrophages and production of tumor necrosis factor α (TNFα). The CD73-TGFβ dual-blockade promoted a multifaceted inflammatory tumor microenvironment, as shown by the diminished levels of myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and substantially increased levels of activated dendritic cells, cytotoxic T cells, and B cells. Collectively, our results have highlighted a novel strategy for TNBC treatment.
Collapse
Affiliation(s)
- Yun Xing
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Zhi-Qiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Rui Jin
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Liang Liu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Jin-Peng Pei
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
9
|
Wang KH, Ding DC. Role of cancer-associated mesenchymal stem cells in the tumor microenvironment: A review. Tzu Chi Med J 2022; 35:24-30. [PMID: 36866340 PMCID: PMC9972927 DOI: 10.4103/tcmj.tcmj_138_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were applied to the therapy for degenerative diseases, immune, and inflammation. In tumor microenvironments (TME), different sources of MSCs showed that tumor-promoting and -inhibiting effects were mediated by different signaling pathways. Cancer-associated MSCs (CaMSCs) could be recruited from bone marrow or local tissues and mainly showed tumor-promoting and immunosuppressive effects. The transformed CaMSCs preserve the characteristics of stem cells, but the properties of regulating TME are different. Hence, we specifically focus on CaMSCs and discuss the detailed mechanisms of regulating the development of cancer cells and immune cells. CaMSCs could be a potential therapeutic target in various types of cancer. However, the detailed mechanisms of CaMSCs in the TME are relatively less known and need further study.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan,Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Dah-Ching Ding, Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
10
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Monteiro I, Missiaglia E, Sciarra A, Santos JV, Bouilly J, Romero P, Sempoux C, de Leval L. CD73 expression in normal, hyperplastic, and neoplastic thyroid: a systematic evaluation revealing CD73 overexpression as a feature of papillary carcinomas. Virchows Arch 2021; 479:209-214. [PMID: 34019179 PMCID: PMC8298324 DOI: 10.1007/s00428-021-03100-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
CD73 converts AMP to adenosine, an immunosuppressive metabolite that promotes tumorigenesis. This study presents a systematic evaluation of CD73 expression in benign, hyperplastic, and neoplastic thyroid. CD73 expression was assessed by immunohistochemistry in 142 thyroid samples. CD73 was expressed in normal thyroid (3/6) and goiter (5/6), with an apical pattern and mild intensity. Apical and mild CD73 expression was also present in oncocytic cell adenomas/carcinomas (9/10; 5/8) and in follicular adenomas/carcinomas (12/18; 23/27). In contrast, papillary thyroid carcinomas featured extensive and intense CD73 staining (49/50) (vs. normal thyroid/goiter, p < 0.001). Seven of nine anaplastic carcinomas were CD73-positive with heterogeneous extensiveness of staining. Medullary and poorly differentiated carcinomas were mostly CD73-negative (1/6; 2/2). These results were corroborated by NT5E mRNA profiling. Papillary carcinomas feature enhanced CD73 protein and mRNA expression with distinct and intense staining, more pronounced in the invasive fronts of the tumors.
Collapse
Affiliation(s)
- Inês Monteiro
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland
| | - Amedeo Sciarra
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
| | - João Vasco Santos
- MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS - Centre for Health Technology and Services Research, Porto, Portugal
- Public Health Unit, ACES Grande Porto VIII - Espinho/Gaia, ARS Norte, Espinho, Portugal
| | - Justine Bouilly
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 25, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
12
|
Kurnit KC, Draisey A, Kazen RC, Chung C, Phan LH, Harvey JB, Feng J, Xie S, Broaddus RR, Bowser JL. Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Lett 2021; 505:75-86. [PMID: 33609609 PMCID: PMC9812391 DOI: 10.1016/j.canlet.2021.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
In many tumors, CD73 (NT5E), a rate-limiting enzyme in adenosine biosynthesis, is upregulated by TGF-β and drives tumor progression. Conversely, CD73 is downregulated in endometrial carcinomas (EC) despite a TGF-β-rich environment. Through gene expression analyses of normal endometrium samples of the uterine cancer TCGA data set and genetic and pharmacological studies, we discovered CD73 loss shifts TGF-β1 from tumor suppressor to promoter in EC. TGF-β1 upregulated CD73 and epithelial integrity in vivo in the normal endometrium and in vitro in early stage EC cells. With loss of CD73, TGF-β1-mediated epithelial integrity was abrogated. EC cells developed TGF-β1-mediated stress fibers and macromolecule permeability, migration, and invasion increased. In human tumors, CD73 is downregulated in deeply invasive stage I EC. Consistent with shifting TGF-β1 activity, CD73 loss increased TGF-β1-mediated canonical signaling and upregulated cyclin D1 (CCND1) and downregulated p21 expression. This shift was clinically relevant, as CD73Low/CCND1High expression associated with poor tumor differentiation, increased myometrial and lymphatic/vascular space invasion, and patient death. Further loss of CD73 in CD73Low expressing advanced stage EC cells increased TGF-β-mediated stress fibers, signaling, and invasiveness, whereby adenosine A1 receptor agonist, CPA, dampened TGF-β-mediated invasion. These data identify CD73 loss as essential for shifting TGF-β activity in EC.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Ashley Draisey
- University of Northern Iowa, Cedar Falls, IA, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca C Kazen
- University of Colorado at Boulder, Boulder, CO, USA; CPRIT/CURE Summer Research Experience, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Chung
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luan H Phan
- University of Texas McGovern Medical School, Houston, TX, USA
| | | | - Jiping Feng
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - SuSu Xie
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Russell R Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Tian WJ, Feng PH, Wang J, Yan T, Qin QF, Li DL, Liang WT. CCR7 Has Potential to Be a Prognosis Marker for Cervical Squamous Cell Carcinoma and an Index for Tumor Microenvironment Change. Front Mol Biosci 2021; 8:583028. [PMID: 33869272 PMCID: PMC8047428 DOI: 10.3389/fmolb.2021.583028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) has an essential role in the development of cervical squamous cell carcinoma (CSCC); however, the dynamic role of the stromal and immune cells is still unclear in TME. We downloaded data from The Cancer Genome Atlas (TCGA) database and applied ESTIMATE and CIBERSORT algorithms to measure the quantity of stromal and immune cells and the composition of tumor-infiltrating immune cell (TIC) in 253 CSCC cases. The protein-protein interaction (PPI) network and Cox regression analysis presented the differentially expressed genes (DEGs). Then, C-C chemokine receptor type 7 (CCR7) was screened out as a prognostic marker by the univariate Cox and intersection analysis of PPI. Further analysis showed a positive correlation between the expression of CCR7 and the survival of CSCC patients. The result of the Gene Set Enrichment Analysis (GSEA) of genes in the high CCR7 expression group displayed a predominant enrichment in immune-related pathways. An enrichment in metabolic activities was observed in the low CCR7 expression group. CIBERSORT analysis showed a positive correlation between Plasma cells, CD8+ T cells, and regulatory T cells and the CCR7 expression, suggesting that CCR7 might play a crucial role in maintaining the immunological dominance status for TME. Therefore, the expression level of CCR7 might help predict the survival of CSCC cases and be an index that the status of TME transitioned from immunological dominance to metabolic activation, which presented a new insight into the treatment of CSCC.
Collapse
Affiliation(s)
- Wei-Jie Tian
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Peng-Hui Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Wang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Ting Yan
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Qing-Feng Qin
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Dong-Lin Li
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Wen-Tong Liang
- Department of Gynecology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Tumor-resident adenosine-producing mesenchymal stem cells as a potential target for cancer treatment. Clin Exp Med 2021; 21:205-213. [PMID: 33484380 DOI: 10.1007/s10238-020-00674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
The development of new therapies based on tumor biology is one of the main topics in cancer treatment. In this regard, investigating the microenvironment and cellular composition of the tumor is of particular interest. Mesenchymal stem cells (MSCs) are a major group of cells in the tumor tissue and play a critical role in tumor growth and development. Investigating the mechanisms by which MSCs influence tumor growth and progression is very useful in establishing new therapeutic approaches. MSCs have some immunological capacities, including anti-inflammatory, immune-regulatory, and immune-suppressive abilities, which help the tumor growth in the inflammatory condition. They can suppress the proliferation and activation of CD4 + T cells and direct them toward the regulatory phenotype through the release of some factors such as indoleamine 2,3-dioxygenase, prostaglandin E2, and HO-1, PD-1 ligands (PD-L1 and PD-L2) and promote tolerance and apoptosis. Besides, these cells are able to produce adenosine. Adenosine has a key role in controlling the immune system by signaling through receptors located on the surface of immune cells. It plays a very essential role in tumor growth and progression. In the present review, we investigate and introduce adenosine-producing mesenchymal stem cells as a potential target for cancer treatment.
Collapse
|
16
|
Papait A, Stefani FR, Cargnoni A, Magatti M, Parolini O, Silini AR. The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Front Cell Dev Biol 2020; 8:447. [PMID: 32637408 PMCID: PMC7317293 DOI: 10.3389/fcell.2020.00447] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in tumorigenesis and is composed of different cellular components, including immune cells and mesenchymal stromal cells (MSCs). In this review, we will discuss MSCs in the TME setting and more specifically their interactions with immune cells and how they can both inhibit (immunosurveillance) and favor (immunoediting) tumor growth. We will also discuss how MSCs are used as a therapeutic strategy in cancer. Due to their unique immunomodulatory properties, MSCs isolated from perinatal tissues are intensely explored as therapeutic interventions in various inflammatory-based disorders with promising results. However, their therapeutic applications in cancer remain for the most part controversial and, importantly, the interactions between administered perinatal MSC and immune cells in the TME remain to be clearly defined.
Collapse
Affiliation(s)
- Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Largo A. Gemelli, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|
17
|
Jeske SS, Theodoraki MN, Boelke E, Laban S, Brunner C, Rotter N, Jackson EK, Hoffmann TK, Schuler PJ. Adenosine production in mesenchymal stromal cells in relation to their developmental status. HNO 2020; 68:87-93. [PMID: 31915882 DOI: 10.1007/s00106-019-00805-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are multipotent progenitor cells found in the tumor microenvironment. They have an innate and regulatory immune activity, and they are able to produce immunosuppressive adenosine (ADO) via their ectonucleotidases CD39 and CD73. The present study explores ADO metabolism of MSC in relation to their developmental status. METHODS We analyzed MSC (n = 6), chondrogenic progenitor cells (CPC, n = 8), and chondrocytes (n = 8) for surface markers by flow cytometry. The ability to hydrolyze ATP and to produce ADO was tested by luminescence assays and mass spectrometry. RESULTS Significant differences in the surface marker expression of MSC, CPC, and chondrocytes were seen. While the expression of CD73 was observed to be the same on all cell types, the expression of the ectonucleotidase CD39 was significantly increased on MSC. Consequently, production of ADO was most abundant in MSC as compared with chondrocytes and CPC. CONCLUSION Mesenchymal stromal cells are potent producers of ADO and are, therefore, able to increase immunosuppression. As MSC differentiate into chondrocytes, they lose this ability and may take on other functions.
Collapse
Affiliation(s)
- S S Jeske
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - M N Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - E Boelke
- Department of Radiotherapy and Radiooncology, Heinrich Heine University, Düsseldorf, Germany
| | - S Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - C Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - N Rotter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Mannheim University Medical Center, Mannheim, Germany
| | - E K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T K Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany
| | - P J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Frauensteige 12, 89075, Ulm, Germany.
| |
Collapse
|
18
|
Zeng J, Chen S, Li C, Ye Z, Lin B, Liang Y, Wang B, Ma Y, Chai X, Zhang X, Zhou K, Zhang Q, Zhang H. Mesenchymal stem/stromal cells-derived IL-6 promotes nasopharyngeal carcinoma growth and resistance to cisplatin via upregulating CD73 expression. J Cancer 2020; 11:2068-2079. [PMID: 32127934 PMCID: PMC7052921 DOI: 10.7150/jca.37932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Shasha Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Caihong Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, The Fifth People's Hospital of Dongguan, Dongguan 523905, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Yan Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Xingxing Chai
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023 China
| | - Keyuan Zhou
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia 19104, USA
| | - Haitao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
19
|
Nguyen AM, Zhou J, Sicairos B, Sonney S, Du Y. Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State. Mol Cell Proteomics 2020; 19:375-389. [PMID: 31879272 PMCID: PMC7000112 DOI: 10.1074/mcp.ra119.001779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state.
Collapse
Affiliation(s)
- Anna M Nguyen
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Sangeetha Sonney
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|