1
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
2
|
Yun W, Kim YJ, Lee G. Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells. Int J Stem Cells 2022; 15:14-25. [PMID: 35220289 PMCID: PMC8889328 DOI: 10.15283/ijsc22008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Glia have been known for its pivotal roles in physiological and pathological conditions in the nervous system. To study glial biology, multiple approaches have been applied to utilize glial cells for research, including stem cell-based technologies. Human glial cells differentiated from pluripotent stem cells are now available, allowing us to study the structural and functional roles of glia in the nervous system, although the efficiency is still low. Direct conversion is an advanced strategy governing fate conversion of diverse cell types directly into the desired lineage. This novel strategy stands as a promising approach for preliminary research and regenerative medicine. Direct conversion employs genetic and environmental cues to change cell fate to that with the required functional cell properties while retaining maturity-related molecular features. As an alternative method, it is now possible to obtain a variety of mature cell populations that could not be obtained using conventional differentiation methods. This review summarizes current achievements in obtaining glia, particularly oligodendrocytes and Schwann cells.
Collapse
Affiliation(s)
- Wonjin Yun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med 2022; 7:4. [PMID: 35027563 PMCID: PMC8758684 DOI: 10.1038/s41536-021-00199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The generation of human oligodendrocyte progenitor cells (OPCs) may be therapeutically valuable for human demyelinating diseases such as multiple sclerosis. Here, we report the direct reprogramming of human somatic cells into expandable induced OPCs (iOPCs) using a combination of OCT4 and a small molecule cocktail. This method enables generation of A2B5+ (an early marker for OPCs) iOPCs within 2 weeks retaining the ability to differentiate into MBP-positive mature oligodendrocytes. RNA-seq analysis revealed that the transcriptome of O4+ iOPCs was similar to that of O4+ OPCs and ChIP-seq analysis revealed that putative OCT4-binding regions were detected in the regulatory elements of CNS development-related genes. Notably, engrafted iOPCs remyelinated the brains of adult shiverer mice and experimental autoimmune encephalomyelitis mice with MOG-induced 14 weeks after transplantation. In conclusion, our study may contribute to the development of therapeutic approaches for neurological disorders, as well as facilitate the understanding of the molecular mechanisms underlying glial development.
Collapse
|
4
|
Stifani S. Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:707861. [PMID: 34602979 PMCID: PMC8485040 DOI: 10.3389/fncel.2021.707861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are a large group of glial cells that perform a variety of physiological functions in the nervous system. They provide trophic, as well as structural, support to neuronal cells. Astrocytes are also involved in neuroinflammatory processes contributing to neuronal dysfunction and death. Growing evidence suggests important roles for astrocytes in non-cell autonomous mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Understanding these mechanisms necessitates the combined use of animal and human cell-based experimental model systems, at least in part because human astrocytes display a number of unique features that cannot be recapitulated in animal models. Human induced pluripotent stem cell (hiPSC)-based approaches provide the opportunity to generate disease-relevant human astrocytes to investigate the roles of these cells in ALS. These approaches are facing the growing recognition that there are heterogenous populations of astrocytes in the nervous system which are not functionally equivalent. This review will discuss the importance of taking astrocyte heterogeneity into consideration when designing hiPSC-based strategies aimed at generating the most informative preparations to study the contribution of astrocytes to ALS pathophysiology.
Collapse
Affiliation(s)
- Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Yun W, Kim IY, Song G, You S. Rapid induction of gliogenesis in OLIG2 and NKX2.2-expressing progenitors-derived spheroids. Stem Cells Transl Med 2020; 9:1643-1650. [PMID: 32716131 PMCID: PMC7695630 DOI: 10.1002/sctm.19-0455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
Glial cells are crucial for the development of the central nervous system and the maintenance of chemical homeostasis. The process of gliogenesis has been well studied in the rodent brain, but it remains less well studied in the human brain. In addition, rodent glial cells differ from human counterparts in terms of morphologies, functions, and anatomical locations. Cerebral organoids (also referred to as spheroids) derived from human pluripotent stem cells (hPSCs) have been developed and are suitable cell-based models for researching developmental and neurodegenerative diseases. The in vitro generation of glia, including astrocytes and oligodendrocytes, from such organoids represents a promising tool to model neuronal diseases. Here, we showed that three-dimensional (3D) culture of OLIG2- and NKX2.2-expressing neurospheres produced efficiently mature astrocytes and oligodendrocytes in terms of morphologies and expression pattern recapitulating native 3D environment. Our findings provide important insights for developmental research of the human brain and glial specification that may facilitate patient-specific disease modeling.
Collapse
Affiliation(s)
- Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Griffin K, Bejoy J, Song L, Hua T, Marzano M, Jeske R, Sang QXA, Li Y. Human Stem Cell-derived Aggregates of Forebrain Astroglia Respond to Amyloid Beta Oligomers. Tissue Eng Part A 2019; 26:527-542. [PMID: 31696783 DOI: 10.1089/ten.tea.2019.0227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are vital components in neuronal circuitry and there is increasing evidence linking the dysfunction of these cells to a number of central nervous system diseases. Studying the role of these cells in human brain function in the past has been difficult due to limited access to the human brain. In this study, human induced pluripotent stem cells were differentiated into astrospheres using a hybrid plating method, with or without dual SMAD inhibition. The derived cells were assessed for astrocytic markers, brain regional identity, phagocytosis, calcium-transient signaling, reactive oxygen species production, and immune response. Neural degeneration was modeled by stimulation with amyloid-β (Aβ) 42 oligomers. Finally, co-culture was performed for the derived astrospheres with isogenic neurospheres. Results indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix, and are capable of phagocytosing iron oxide particles and responding to Aβ42 stimulation (higher oxidative stress, higher TNF-α, and IL-6 expression). RNA-sequencing results reveal the distinct transcriptome of the derived cells responding to Aβ42 stimulation for astrocyte markers, chemokines, and brain regional identity. Co-culture experiments show the synaptic activities of neurons and the enhanced neural protection ability of the astroglial cells. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and the formation of engineered neuronal synapses in vitro. The implications lie in neurological disease modeling, drug screening, and studying progression of neural degeneration and the role of stem cell microenvironment. Impact Statement Human pluripotent stem cell-derived astrocytes are a powerful tool for disease modeling and drug screening. However, the properties regarding brain regional identity and the immune response to neural degeneration stimulus have not been well characterized. Results of this study indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix (ECM), and are capable of phagocytosing iron oxide particles and responding to amyloid-β oligomers, showing the distinct transcriptome in astrocyte markers, chemokines, and brain regional identity. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and engineering neural tissues in vitro.
Collapse
Affiliation(s)
- Kyle Griffin
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Thien Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA.,Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
7
|
Furuya K, Zheng YW, Sako D, Iwasaki K, Zheng DX, Ge JY, Liu LP, Furuta T, Akimoto K, Yagi H, Hamada H, Isoda H, Oda T, Ohkohchi N. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J Stem Cells 2019; 11:705-721. [PMID: 31616545 PMCID: PMC6789189 DOI: 10.4252/wjsc.v11.i9.705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To solve the problem of liver transplantation donor insufficiency, an alternative cell transplantation therapy was investigated. We focused on amniotic epithelial cells (AECs) as a cell source because, unlike induced pluripotent stem cells, they are cost-effective and non-tumorigenic. The utilization of AECs in regenerative medicine, however, is in its infancy. A general profile for AECs has not been comprehensively analyzed. Moreover, no hepatic differentiation protocol for AECs has yet been established. To this end, we independently compiled human AEC libraries, purified amniotic stem cells (ASCs), and co-cultured them with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cell (HUVECs) in a 3D system which induces functional hepatic organoids.
AIM To characterize AECs and generate functional hepatic organoids from ASCs and other somatic stem cells
METHODS AECs, MSCs, and HUVECs were isolated from the placentae and umbilical cords of cesarean section patients. Amnion and primary AEC stemness characteristics and heterogeneity were analyzed by immunocytochemistry, Alkaline phosphatase (AP) staining, and flow cytometry. An adherent AEC subpopulation was selected and evaluated for ASC purification quality by a colony formation assay. AEC transcriptomes were compared with those for other hepatocytes cell sources by bioinformatics. The 2D and 3D culture were compared by relative gene expression using several differentiation protocols. ASCs, MSCs, and HUVECs were combined in a 3D co-culture system to generate hepatic organoids whose structure was compared with a 3D AEC sphere and whose function was elucidated by immunofluorescence imaging, periodic acid Schiff, and an indocyanine green (ICG) test.
RESULTS AECs have certain stemness markers such as EPCAM, SSEA4, and E-cadherin. One AEC subpopulation was also either positive for AP staining or expressed the TRA-1-60 and TRA-1-81 stemness markers. Moreover, it could form colonies and its frequency was enhanced ten-fold in the adherent subpopulation after selective primary passage. Bioinformatics analysis of ribose nucleic acid sequencing revealed that the total AEC gene expression was distant from those of pluripotent stem cells and hepatocytes but some gene expression overlapped among these cells. TJP1, associated with epidermal growth factor receptor, and MET, associated with hepatocyte growth factor receptor, were upregulated and may be important for hepatic differentiation. In conventional flat culture, the cells turned unviable and did not readily differentiate into hepatocytes. In 3D culture, however, hepatic gene expression of the AEC sphere was elevated even under a two-step differentiation protocol. Furthermore, the organoids derived from the MSC and HUVEC co-culture showed 3D structure with polarity, hepatic-like glycogen storage, and ICG absorption/elimination.
CONCLUSION Human amniotic epithelial cells are heterogeneous and certain subpopulations have high stemness. Under a 3D co-culture system, functional hepatic organoids were generated in a multicellular microenvironment.
Collapse
Affiliation(s)
- Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Daisuke Sako
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Kenichi Iwasaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dong-Xu Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroya Yagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|