1
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Wan Z, Wang X, Fu Z, Ma Y, Dai G, Gong X, Chen G, Yang L. Toll-like receptor activation regulates the paracrine effect of adipose-derived mesenchymal stem cells on reversing osteoarthritic phenotype of chondrocytes. Mol Biol Rep 2024; 51:550. [PMID: 38642183 DOI: 10.1007/s11033-024-09499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1β-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1β-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1β-treated chondrocytes. CONCLUSIONS TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.
Collapse
Affiliation(s)
- Zu Wan
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gang Dai
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Hwang S, Sung DK, Kim YE, Yang M, Ahn SY, Sung SI, Chang YS. Mesenchymal Stromal Cells Primed by Toll-like Receptors 3 and 4 Enhanced Anti-Inflammatory Effects against LPS-Induced Macrophages via Extracellular Vesicles. Int J Mol Sci 2023; 24:16264. [PMID: 38003458 PMCID: PMC10670946 DOI: 10.3390/ijms242216264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)' immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
Collapse
Affiliation(s)
- Sein Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
4
|
Liu Z, Yu Q, Liu H. Mesenchymal Stem Cells in Heterotopic Ossification in Ankylosing Spondylitis: A Bibliometric Study Based on CiteSpace and VOSViewer. J Inflamm Res 2023; 16:4389-4398. [PMID: 37814636 PMCID: PMC10560485 DOI: 10.2147/jir.s421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
Background Heterotopic ossification is a complication in the late stage of ankylosing spondylitis (AS), and involves abnormal osteogenesis by mesenchymal stem cells (MSC). Research activity in this area has been rapidly expanding, but there is a lack of bibliometric studies that summarize the progresses. Methods We searched the Web of Science (WoS) for articles pertaining to the role of MSCs in heterotopic ossification in AS from the database inception to December 2022 and visualized the countries, authors, institutions, references, and keywords using CiteSpace 6.1.R6 and VOSViewer. Results A total of 127 publications from 188 institutions were identified, with a trend for increasing number of articles per year. China published the largest number of literature, followed by the United States and France. There were 47 core authors. The most recent research in this area mainly focused on "osteogenic differentiation", "gene expression", "inflammation", "TNF-α" and "bone formation". Current research can be broadly summarized into two topics: abnormalities in the inflammatory microenvironment and abnormalities in the MSCs. Aberrant expression of a variety of surface proteins in MSCs predisposes these cells to undergo osteogenic differentiation, and pro-inflammatory cytokines in the inflammatory milieu stimulate osteogenic differentiation of MSCs. Conclusion MSCs in heterotopic ossification in AS is a relatively new area of research. Research activities primarily consist abnormalities in the inflammatory microenvironment and abnormalities in the MSCs.
Collapse
Affiliation(s)
- Zhaoyi Liu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Yu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hongxiao Liu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
6
|
Cai J, Jiang Y, Chen F, Wu S, Ren H, Wang P, Wang J, Liu W. PCSK9 promotes T helper 1 and T helper 17 cell differentiation by activating the nuclear factor-κB pathway in ankylosing spondylitis. Immun Inflamm Dis 2023; 11:e870. [PMID: 37249282 PMCID: PMC10214583 DOI: 10.1002/iid3.870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE Our previous study reveals that proprotein convertase subtilisin/kexin type 9 (PCSK9) is positively related to inflammatory markers, T helper (Th)-17 cells, and treatment response in ankylosing spondylitis (AS) patients. Subsequently, this study aimed to explore the effect of PCSK9 on Th cell differentiation and its potential molecular mechanism in AS. METHODS Serum PCSK9 was determined by enzyme-linked immunosorbent assay in 20 AS patients and 20 healthy controls (HCs). Then naïve CD4+ T cells were isolated from AS patients and infected with PCSK9 overexpression or knockdown adenovirus followed by polarization assay. Afterward, PMA (an NF-κB activator) was administrated. RESULTS PCSK9 was increased in AS patients compared to HCs (p < .001), and it was positively related to Th1 cells (p = .050) and Th17 cells (p = .039) in AS patients. PCSK9 overexpression increased the CD4+ IFN-γ+ cells (p < .05), CD4+ IL-17A+ cells (p < .01), IFN-γ (p < .01), and IL-17A (p < .01), while it exhibited no effect on CD4+ IL-4+ cells or IL-4 (both p > .05); its knockdown displayed the opposite function on them. Moreover, PCSK9 overexpression upregulated the p-NF-κB p65/NF-κB p65 (p < .01), while it had no effect on p-ERK/ERK or p-JNK/JNK (both p > .05); its knockdown decreased p-NF-κB p65/NF-κB p65 (p < .01) and p-JNK/JNK (p < .05). Then, PMA upregulates p-NF-κB p65/NF-κB p65 (p < .001) and increased CD4+ IFN-γ+ cells, CD4+ IL-17A+ cells, IFN-γ, and IL-17A (all p < .01), also it alleviated the effect of PCSK9 knockdown on NF-κB inhibition and Th cell differentiation (all p < .01). CONCLUSION PCSK9 enhances Th1 and Th17 cell differentiation in an NF-κB-dependent manner in AS, while further validation is necessary.
Collapse
Affiliation(s)
- Jianfei Cai
- Department of Rheumatology and ImmunologyHuadong Hospital Affiliated with Fudan UniversityShanghaiChina
| | - Yinghui Jiang
- Department of Traditional Chinese Medicine and PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Fucai Chen
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| | - Shubin Wu
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| | - Hongjun Ren
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| | - Pingping Wang
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| | - Jiayong Wang
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| | - Wei Liu
- Department of Rheumatology and ImmunologyShanghai Qiang‐zhi HospitalShanghaiChina
| |
Collapse
|
7
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
8
|
Interferon-γ enhances the immunosuppressive ability of canine bone marrow-derived mesenchymal stem cells by activating the TLR3-dependent IDO/kynurenine pathway. Mol Biol Rep 2022; 49:8337-8347. [PMID: 35690960 DOI: 10.1007/s11033-022-07648-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate effective strategies for enhancing the immunomodulation effect of MSCs. Nonetheless, canine MSC-mediated immunomodulation is still poorly understood. METHODS AND RESULTS The inflammatory microenvironment was simulated through the employment of interferon-γ (IFN-γ) in a culture system. Compared with unstimulated cBMSCs, IFN-γ stimulation increased the mRNA levels of Toll-like receptor 3 (TLR3) and indoleamine 2, 3-dioxygenase 1 (IDO-1), and simultaneously enhanced the secretion of immunosuppressive molecules, including interleukin (IL)-10, hepatocyte growth factor (HGF), and kynurenine in cBMSCs. IFN-γ stimulation significantly enhanced the ability of cBMSCs and their supernatant to suppress the proliferation of murine spleen lymphocytes. Lymphocyte subtyping evaluation revealed that cBMSCs and their supernatant diminished the percentage of CD3+CD4+ and CD3+CD8+ lymphocytes compared with the control group, with a decreasing CD4+/CD8+ ratio. Notably, exposure to IFN-γ decreased the CD4+/CD8+ ratio more effectively than unstimulated cells or supernatant. Additionally, IFN-γ-stimulation increased the mRNA levels of the Th1 cytokines TNF-α, and remarkably decreased the mRNA level of the Th2 cytokine IL-4 and IL-10. CONCLUSION Our findings substantiate that IFN-γ stimulation can enhance the immunomodulatory properties of cBMSCs by promoting TLR3-dependent activation of the IDO/kynurenine pathway, increasing the secretion of immunoregulatory molecules and strengthening interactions with T lymphocytes, which may provide a meaningful strategy for the clinical application of cBMSCs in immune-related diseases.
Collapse
|
9
|
Li YX, Liu T, Liang YW, Huang JJ, Huang JS, Liu XG, Cheng ZY, Lu SX, Li M, Huang L. Integrative analysis of long non-coding RNA and messenger RNA expression in toll-like receptor 4-primed mesenchymal stem cells of ankylosing spondylitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1563. [PMID: 34790769 PMCID: PMC8576702 DOI: 10.21037/atm-21-5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
Background The precise pathogenesis of ankylosing spondylitis (AS) is still largely unknown at present. Our previous study found that toll-like receptor 4 (TLR4) downregulated and performed immunoregulatory dysfunction in mesenchymal stem cells from AS patients (AS-MSCs). The aim of this study was to explore the expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in TLR4-primed AS-MSCs, and to clarify the potential mechanisms. Methods The immunoregulatory effects of MSCs were determined after TLR4 activation. Next, the differentially-expressed (DE) lncRNAs and mRNAs between AS-MSCs and TLR4-primed AS-MSCs [stimulated by lipopolysaccharide (LPS)] were identified via high-throughput sequencing followed by quantitative real-time PCR (qRT-PCR) confirmation. Finally, bioinformatics analyses were performed to identify the critical biological functions, signaling pathways, and associated functional networks involved in the TLR4-primed immunoregulatory function of AS-MSCs. Results A total of 147 DE lncRNAs and 698 DE mRNAs were identified between TLR4-primed AS-MSCs and unstimulated AS-MSCs. Of these, 107 lncRNAs were upregulated and 40 were downregulated (fold change ≥2, P<0.05), while 504 mRNAs were upregulated and 194 were downregulated (fold change ≥2, P<0.05). Five lncRNAs and five mRNAs with the largest fold changes were respectively verified by qRT-PCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that the DE mRNAs and lncRNAs were highly associated with the inflammatory response, such as NOD-like receptor (NLR) signaling pathway, the TNF signaling pathway and the NF-κB signaling pathway. Cis-regulation prediction revealed eight novel lncRNAs, while trans-regulation prediction revealed 15 lncRNAs, respectively. Eight core pairs of lncRNA and target mRNA in the lncRNA-transcription factor (TF)-mRNA network were as follows: PACERR-PTGS2, LOC105378085-SOD2, LOC107986655-HIVEP2, MICB-DT-MICB, LOC105373925-SP140L, LOC107984251-IFIT5, LOC112268267-GBP2, and LOC101926887-IFIT3, respectively. Conclusions TLR4 activation in AS can enhance the immunoregulatory ability of MSCs. Eight core pairs of lncRNA and target mRNA were observed in TLR4-primed AS-MSCs, which could contribute to understanding the potential mechanism of AS-MSC immunoregulatory dysfunction.
Collapse
Affiliation(s)
- Yu-Xi Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Liu
- Department of Anaesthesia, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wei Liang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jun Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Shen Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Ge Liu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi-Ying Cheng
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi-Xin Lu
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Manganeli Polonio C, Longo de Freitas C, Garcia de Oliveira M, Rossato C, Nogueira Brandão W, Ghabdan Zanluqui N, Gomes de Oliveira L, Ayumi Nishiyama Mimura L, Braga Barros Silva M, Lúcia Garcia Calich V, Gil Nisenbaum M, Halpern S, Evangelista L, Maluf M, Perin P, Eduardo Czeresnia C, Schatzmann Peron JP. Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression. Clin Sci (Lond) 2021; 135:1065-1082. [PMID: 33960391 DOI: 10.1042/cs20201544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Cellular therapy with mesenchymal stem cells (MSCs) is a huge challenge for scientists, as little translational relevance has been achieved. However, many studies using MSCs have proved their suppressive and regenerative capacity. Thus, there is still a need for a better understanding of MSCs biology and the establishment of newer protocols, or to test unexplored tissue sources. Here, we demonstrate that murine endometrial-derived MSCs (meMSCs) suppress Experimental Autoimmune Encephalomyelitis (EAE). MSC-treated animals had milder disease, with a significant reduction in Th1 and Th17 lymphocytes in the lymph nodes and in the central nervous system (CNS). This was associated with increased Il27 and Cyp1a1 expression, and presence of IL-10-secreting T CD4+ cells. At EAE peak, animals had reduced CNS infiltrating cells, histopathology and demyelination. qPCR analysis evidenced the down-regulation of several pro-inflammatory genes and up-regulation of indoleamine-2,3-dioxygenase (IDO). Consistently, co-culturing of WT and IDO-/- meMSCs with T CD4+ cells evidenced the necessity of IDO on the suppression of encephalitogenic lymphocytes, and IDO-/- meMSCs were not able to suppress EAE. In addition, WT meMSCs stimulated with IL-17A and IFN-γ increased IDO expression and secretion of kynurenines in vitro, indicating a negative feedback loop. Pathogenic cytokines were increased when CD4+ T cells from AhR-/- mice were co-cultured with WT meMSC. In summary, our research evidences the suppressive activity of the unexplored meMSCs population, and shows the mechanism depends on IDO-kynurenines-Aryl hydrocarbon receptor (AhR) axis. To our knowledge this is the first report evidencing that the therapeutic potential of meMSCs relying on IDO expression.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Longo de Freitas
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marília Garcia de Oliveira
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cristiano Rossato
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Wesley Nogueira Brandão
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nágela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Maysa Braga Barros Silva
- Clinical Biochemistry Laboratory, Clinical Analysis Department, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Silvio Halpern
- Division of Reproductive Medicine, Halpern Clinic, São Paulo, SP, Brazil
| | | | | | - Paulo Perin
- Division of Reproductive Medicine, CEERH, São Paulo, SP, Brazil
| | | | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
11
|
Ding Y, Xu J, Cheng LB, Huang YQ, Wang YQ, Li H, Li Y, Ji JY, Zhang JH, Zhao L. Effect of Emodin on Coxsackievirus B3m-Mediated Encephalitis in Hand, Foot, and Mouth Disease by Inhibiting Toll-Like Receptor 3 Pathway In Vitro and In Vivo. J Infect Dis 2021; 222:443-455. [PMID: 32115640 DOI: 10.1093/infdis/jiaa093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-β in serum were tested with enzyme-linked immunosorbent assay. RESULTS Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-β, in serum. CONCLUSIONS Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Medical and Health Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei Province, People's Republic of China.,Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Liang-Bin Cheng
- Department of Liver Diseases, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yong-Qian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - You-Qin Wang
- Department of Pediatrics, Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Yichang Central People's Hospital, Yichang, Hubei Province, People's Republic of China
| | - Jing-Yu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ji-Hong Zhang
- Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
12
|
Yu W, Chen K, Ye G, Wang S, Wang P, Li J, Zheng G, Liu W, Lin J, Su Z, Che Y, Ye F, Ma M, Xie Z, Shen H. SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Hum Mol Genet 2020; 30:277-293. [PMID: 33355648 DOI: 10.1093/hmg/ddaa272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023] Open
Abstract
Ankylosing spondylitis (AS) is a rheumatic disease with pathological osteogenesis that causes bony ankylosis and even deformity over time. Mesenchymal stem cells (MSCs) are multipotent stem cells that are the main source of osteoblasts. We previously demonstrated that enhanced osteogenic differentiation of MSCs from AS patients (ASMSCs) is related to pathological osteogenesis in AS. However, the more concrete mechanism needs further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development. Single-nucleotide polymorphisms (SNPs) regulate the formation and interaction of SEs and denote genes accounting for AS susceptibility. Via integrative analysis of multiomic data, including histone 3 lysine 27 acetylation (H3K27ac), chromatin immunoprecipitation sequencing (ChIP-seq), SNPs and RNA sequencing (RNA-seq) data, we discovered a transcription network mediated by AS SNP-adjacent SEs (SASEs) in ASMSCs and identified key genes, such as Toll-like receptor 4 (TLR4), interleukin 18 receptor 1 (IL18R1), insulin-like growth factor binding protein 4 (IGFBP4), transportin 1 (TNPO1) and proprotein convertase subtilisin/kexin type 5 (PCSK5), which are pivotal in osteogenesis and AS pathogenesis. The SASE-regulated network modulates the enhanced osteogenic differentiation of ASMSCs by synergistically activating the PI3K-Akt, NF-kappaB and Hippo signaling pathways. Our results emphasize the crucial role of the SASE-regulated network in pathological osteogenesis in AS, and the preferential inhibition of ASMSC osteogenic differentiation by JQ1 indicates that SEs may be attractive targets in future treatment for new bone formation in AS.
Collapse
Affiliation(s)
- Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Keng Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shan Wang
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Feng Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518003, P.R. China
| |
Collapse
|
13
|
Li R, Li Y, Dong X. Preconditioning mesenchymal stromal cells with flagellin enhances the anti‑inflammatory ability of their secretome against lipopolysaccharide‑induced acute lung injury. Mol Med Rep 2020; 22:2753-2766. [PMID: 32945411 PMCID: PMC7453612 DOI: 10.3892/mmr.2020.11380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022] Open
Abstract
Acute lung injury (ALI) is a complex condition frequently encountered in the clinical setting. The aim of the present study was to investigate the effect of conditioned media (CM) from human adipose‑derived mesenchymal stromal cells (MSCs) activated by flagellin (F‑CM), a Toll‑like receptor 5 ligand, on inflammation‑induced lung injury. In the in vitro study, RAW264.7 macrophages treated with F‑CM had a higher proportion of cells with the M2 phenotype, lower expression of pro‑inflammatory factors and stronger expression of anti‑inflammatory genes compared with the CM from normal adipose‑derived MSCs. Furthermore, in vivo experiments were performed in mice with ALI induced by intraperitoneal injection of lipopolysaccharide. F‑CM significantly alleviated the lung exudation, inhibited inflammatory cell recruitment in lung tissues and decreased the concentration of inflammatory factors in the bronchoalveolar lavage fluid. These findings indicated that F‑CM has superior anti‑inflammation ability compared with CM, and that it may represent a promising therapeutic approach to the treatment of inflammation‑induced ALI.
Collapse
Affiliation(s)
- Rui Li
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, P.R. China
| | - Yu Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoyan Dong
- Department of Pulmonary, Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
14
|
Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2019; 17:405-418. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Scar formation is usually the pathological consequence of skin trauma. And hypertrophic scars (HSs) frequently occur in people after being injured deeply. HSs are unusually considered as the result of tissue contraction and excessive extracellular matrix component deposition. Myofibroblasts, as the effector cells, mainly differentiated from fibroblasts, play the crucial role in the pathophysiology of HSs. A number of growth factors, inflammatory cytokines involved in the process of HS occurrence. Currently, with in-depth exploration and clinical research of HSs, various creative and effective treatments budded. In here, we summarize the progress in the molecular mechanism of HSs, and review the available biotherapeutic methods for their pathophysiological characteristics. Additionally, we further prospected that the comprehensive therapy may be more suitable for HS treatment.
Collapse
Affiliation(s)
- Zhong Lingzhi
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Li Meirong
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Fu Xiaobing
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|