1
|
Du Y, Bammidi S, Yang E. Trabecular Meshwork Stem Cells for Glaucoma Treatment. Methods Mol Biol 2025; 2858:143-158. [PMID: 39433674 DOI: 10.1007/978-1-0716-4140-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elevated intraocular pressure (IOP) is the most important risk factor for primary open-angle glaucoma (POAG) and currently is the only effective treatment target for glaucoma to prevent vision loss. In POAG patients, the trabecular meshwork (TM) cellularity is reduced which might be the main pathologic reason for the conventional outflow pathway dysfunction leading to elevated IOP. Stem cell-based therapy has been shown promising to reduce IOP and preserve retinal ganglion cells and their function in animal models. In this chapter, we describe the method details on TM stem cell cultivation and identification; induction for differentiation into different cell types, including differentiation to TM cell responsiveness to dexamethasone treatment with phagocytic function; and transplantation into mouse anterior chamber for therapeutic purposes.
Collapse
Affiliation(s)
- Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enzhi Yang
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Xi G, Feng P, Zhang X, Wu S, Zhang J, Wang X, Xiang A, Xu W, Wang N, Zhu W. iPSC-derived cells stimulate ABCG2 +/NES + endogenous trabecular meshwork cell proliferation and tissue regeneration. Cell Prolif 2024; 57:e13611. [PMID: 38356373 PMCID: PMC11216930 DOI: 10.1111/cpr.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
A major risk factor for glaucoma, the first leading cause of irreversible blindness worldwide, is the decellularisation of the trabecular meshwork (TM) in the conventional outflow pathway. Stem cell-based therapy, particularly the utilisation of induced pluripotent stem cells (iPSCs), presents an enticing potential for tissue regeneration and intraocular pressure (IOP) maintenance in glaucoma. We have previously observed that differentiated iPSCs can stimulate endogenous cell proliferation in the TM, a pivotal factor in TM regeneration and aqueous humour outflow restoration. In this study, we investigated the response of TM cells in vivo after interacting with iPSC-derived cells and identified two subpopulations responsible for this relatively long-term tissue regeneration: ATP Binding Cassette Subfamily G Member 2 (ABCG2)-positive cells and Nestin (NES)-positive cells. We further uncovered that alterations of these responsive cells are linked to ageing and different glaucoma etiologies, suggesting that ABCG2+ subpopulation decellularization could serve as a potential risk factor for TM decellularization in glaucoma. Taken together, our findings illustrated the proliferative subpopulations in the conventional outflow pathway when stimulated with iPSC-derived cells and defined them as TM precursors, which may be applied to develop novel therapeutic approaches for glaucoma.
Collapse
Affiliation(s)
- Gaiping Xi
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Pengchao Feng
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Xiaoyan Zhang
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Shen Wu
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
| | - Jingxue Zhang
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
| | - Xiangji Wang
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
| | - Ailing Xiang
- Qingdao Xikai Biotechnology Co., LtdQingdaoChina
| | - Wenhua Xu
- Department of InspectionQingdao UniversityQingdaoChina
| | - Ningli Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Big Data‐Based Precision MedicineBeijing University of Aeronautics and Astronautics‐Capital Medical UniversityBeijingChina
| | - Wei Zhu
- Department of Pharmacology, School of PharmacyQingdao UniversityQingdaoChina
- Advanced Innovation Center for Big Data‐Based Precision MedicineBeijing University of Aeronautics and Astronautics‐Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Xiao Y, McGhee CNJ, Zhang J. Adult stem cells in the eye: Identification, characterisation, and therapeutic application in ocular regeneration - A review. Clin Exp Ophthalmol 2024; 52:148-166. [PMID: 38214071 DOI: 10.1111/ceo.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024]
Abstract
Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.
Collapse
Affiliation(s)
- Yuting Xiao
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles N J McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jie Zhang
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Yam GHF, Pi S, Du Y, Mehta JS. Posterior corneoscleral limbus: Architecture, stem cells, and clinical implications. Prog Retin Eye Res 2023; 96:101192. [PMID: 37392960 DOI: 10.1016/j.preteyeres.2023.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
The limbus is a transition from the cornea to conjunctiva and sclera. In human eyes, this thin strip has a rich variation of tissue structures and composition, typifying a change from scleral irregularity and opacity to corneal regularity and transparency; a variation from richly vascularized conjunctiva and sclera to avascular cornea; the neural passage and drainage of aqueous humor. The limbal stroma is enriched with circular fibres running parallel to the corneal circumference, giving its unique role in absorbing small pressure changes to maintain corneal curvature and refractivity. It contains specific niches housing different types of stem cells for the corneal epithelium, stromal keratocytes, corneal endothelium, and trabecular meshwork. This truly reflects the important roles of the limbus in ocular physiology, and the limbal functionality is crucial for corneal health and the entire visual system. Since the anterior limbus containing epithelial structures and limbal epithelial stem cells has been extensively reviewed, this article is focused on the posterior limbus. We have discussed the structural organization and cellular components of the region beneath the limbal epithelium, the characteristics of stem cell types: namely corneal stromal stem cells, endothelial progenitors and trabecular meshwork stem cells, and recent advances leading to the emergence of potential cell therapy options to replenish their respective mature cell types and to correct defects causing corneal abnormalities. We have reviewed different clinical disorders associated with defects of the posterior limbus and summarized the available preclinical and clinical evidence about the developing topic of cell-based therapy for corneal disorders.
Collapse
Affiliation(s)
- Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqin Du
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore.
| |
Collapse
|
5
|
Coulon SJ, Schuman JS, Du Y, Bahrani Fard MR, Ethier CR, Stamer WD. A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork. Prog Retin Eye Res 2022; 90:101063. [PMID: 35398015 PMCID: PMC9464663 DOI: 10.1016/j.preteyeres.2022.101063] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
Glaucoma is the leading cause of global irreversible blindness, necessitating research for new, more efficacious treatment options than currently exist. Trabecular meshwork (TM) cells play an important role in the maintenance and function of the aqueous outflow pathway, and studies have found that there is decreased cellularity of the TM in glaucoma. Regeneration of the TM with stem cells has been proposed as a novel therapeutic option by several reports over the last few decades. Stem cells have the capacity for self-renewal and the potential to differentiate into adult functional cells. Several types of stem cells have been investigated in ocular regenerative medicine: tissue specific stem cells, embryonic stem cells, induced pluripotent stem cells, and adult mesenchymal stem cells. These cells have been used in various glaucoma animal models and ex vivo models and have shown success in IOP homeostasis and TM cellularity restoration. They have also demonstrated stability without serious side effects for a significant period of time. Based on current knowledge of TM pathology in glaucoma and existing literature regarding stem cell regeneration of this tissue, we propose a human clinical study as the next step in understanding this potentially revolutionary treatment paradigm. The ability to protect and replace TM cells in glaucomatous eyes could change the field forever.
Collapse
Affiliation(s)
- Sara J Coulon
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA; Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA; Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Reza Bahrani Fard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA, USA
| | - W Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
7
|
Xiong S, Kumar A, Tian S, Taher EE, Yang E, Kinchington PR, Xia X, Du Y. Stem cell transplantation rescued a primary open-angle glaucoma mouse model. eLife 2021; 10:63677. [PMID: 33506763 PMCID: PMC7864631 DOI: 10.7554/elife.63677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness. In this study, we investigated if transplanted stem cells are able to rescue a glaucoma mouse model with transgenic myocilin Y437H mutation and explored the possible mechanisms. Human trabecular meshwork stem cells (TMSCs) were intracamerally transplanted which reduced mouse intraocular pressure, increased outflow facility, protected the retinal ganglion cells and preserved their function. TMSC transplantation also significantly increased the TM cellularity, promoted myocilin secretion from TM cells into the aqueous humor to reduce endoplasmic reticulum stress, repaired the TM tissue with extracellular matrix modulation and ultrastructural restoration. Co-culturing TMSCs with myocilin mutant TM cells in vitro promoted TMSCs differentiating into phagocytic functional TM cells. RNA sequencing revealed that TMSCs had upregulated genes related to TM regeneration and neuroprotection. Our results uncovered therapeutic potential of TMSCs for curing glaucoma and elucidated possible mechanisms by which TMSCs achieve the treatment effect.
Collapse
Affiliation(s)
- Siqi Xiong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Eman E Taher
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Research Institute of Ophthalmology, Giza, Egypt
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
8
|
Ortiz-Melo MT, Garcia-Murillo MJ, Salazar-Rojas VM, Campos JE, Castro-Muñozledo F. Transcriptional profiles along cell programming into corneal epithelial differentiation. Exp Eye Res 2020; 202:108302. [PMID: 33098888 DOI: 10.1016/j.exer.2020.108302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Using the rabbit corneal epithelial cell line RCE1(5T5) as a model, we analyzed three differentiation stages, distinguished on basis to the growth state of cultured cells and after studying the expression of transcription factors such as Oct4, Pax6 and ΔNp63α, selected differentiation markers, and signaling or epigenetic markers such as Notch receptors and Prdm3. Namely, proliferative non-differentiated cells, committed cells, and cells that constitute a stratified epithelium with a limbal epithelial-like structure. RNAseq based transcriptome analysis showed that 4891 genes were differentially expressed among these stages displaying distinctive gene signatures: proliferative cells had 1278 genes as gene signature, and seem to be early epithelial progenitors with an Oct4+, KLF4+, Myc+, ΔNp63α+, ABCG2+, Vimentin+, Zeb1+, VANGL1+, Krt3-, Krt12- phenotype. Committed cells had a gene signature with 417 genes and displayed markers indicative of the beginning of corneal differentiation, and genes characteristic of proliferative cells; we found the possible participation of Six3 and Six4 transcription factors along this stage. The third stage matches with a stratified corneal epithelium (gene signature comprising 979 genes) and is typified by an increase in the expression of WNT10A and NOTCH 2 and 3 signaling and Cux1 transcription factor, besides Pax6, KLF4 or Sox9. The differentiated cells express about 50% of the genes that belong to the Epidermal Differentiation Complex (EDC). Analysis of the differences between corneal epithelium and epidermis could be crucial to understand the regulatory mechanisms that lead to the expression of the differentiated phenotype.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico; Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Maria Jimena Garcia-Murillo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico
| | - Víctor Manuel Salazar-Rojas
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Jorge E Campos
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ap. Postal 314, 54000, Tlalnepantla, Edo. de México, Mexico
| | - Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740. México City, 07000, Mexico.
| |
Collapse
|
9
|
Tian YI, Zhang X, Torrejon K, Danias J, Du Y, Xie Y. A Biomimetic, Stem Cell-Derived In Vitro Ocular Outflow Model. ADVANCED BIOSYSTEMS 2020; 4:e2000004. [PMID: 32734694 PMCID: PMC7484422 DOI: 10.1002/adbi.202000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/07/2020] [Indexed: 12/24/2022]
Abstract
Age-related human trabecular meshwork (HTM) cell loss is suggested to affect its ability to regulate aqueous humor outflow in the eye. In addition, disease-related HTM cell loss is suggested to lead to elevated intraocular pressure in glaucoma. Induced pluripotent stem cell (iPSC)-derived trabecular meshwork (TM) cells are promising autologous cell sources that can be used to restore the declining TM cell population and function. Previously, an in vitro HTM model is bioengineered for understanding HTM cell biology and screening of pharmacological or biological agents that affect trabecular outflow facility. In this study, it is demonstrated that human iPSC-derived TM cells cultured on SU-8 scaffolds exhibit HTM-like cell morphology, extracellular matrix deposition, and drug responsiveness to dexamethasone treatment. These findings suggest that iPSC-derived TM cells behave like primary HTM cells and can thus serve as reproducible and scalable cell sources when using this in vitro system for glaucoma drug screening and further understanding of outflow pathway physiology, leading to personalized medicine.
Collapse
Affiliation(s)
- Yangzi Isabel Tian
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Torrejon
- Glauconix Biosciences, Inc., 251 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Yiqin Du
- University of Pittsburg School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
10
|
Kumar A, Cheng T, Song W, Cheuk B, Yang E, Yang L, Xie Y, Du Y. Two-step induction of trabecular meshwork cells from induced pluripotent stem cells for glaucoma. Biochem Biophys Res Commun 2020; 529:411-417. [PMID: 32703444 DOI: 10.1016/j.bbrc.2020.05.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Reducing intraocular pressure is currently the only effective treatment. Elevated intraocular pressure is associated with increased resistance of the outflow pathway, mainly the trabecular meshwork (TM). Despite great progress in the field, the development of novel and effective treatment for glaucoma is still challenging. In this study, we reported that human induced pluripotent stem cells (iPSCs) can be cultured as colonies and monolayer cells expressing OCT4, alkaline phosphatase, SSEA4 and SSEA1. After induction to neural crest cells (NCCs) positive to NGFR and HNK1, the iPSCs can differentiate into TM cells. The induced iPSC-TM cells expressed TM cell marker CHI3L1, were responsive to dexamethasone treatment with increased expression of myocilin, ANGPTL7, and formed CLANs, comparable to primary TM cells. To the best of our knowledge, this is the first study that induces iPSCs to TM cells through a middle neural crest stage, which ensures a stable NCC pool and ensures the high output of the same TM cells. This system can be used to develop personalized treatments using patient-derived iPSCs, explore high throughput screening of new drugs focusing on TM response for controlling intraocular pressure, and investigate stem cell-based therapy for TM regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu Cheng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weitao Song
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Brandon Cheuk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|