1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Kanamaru H, Suzuki H. Therapeutic potential of stem cells in subarachnoid hemorrhage. Neural Regen Res 2025; 20:936-945. [PMID: 38989928 PMCID: PMC11438332 DOI: 10.4103/nrr.nrr-d-24-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/27/2024] [Indexed: 07/12/2024] Open
Abstract
Aneurysm rupture can result in subarachnoid hemorrhage, a condition with potentially severe consequences, such as disability and death. In the acute stage, early brain injury manifests as intracranial pressure elevation, global cerebral ischemia, acute hydrocephalus, and direct blood-brain contact due to aneurysm rupture. This may subsequently cause delayed cerebral infarction, often with cerebral vasospasm, significantly affecting patient outcomes. Chronic complications such as brain volume loss and chronic hydrocephalus can further impact outcomes. Investigating the mechanisms of subarachnoid hemorrhage-induced brain injury is paramount for identifying effective treatments. Stem cell therapy, with its multipotent differentiation capacity and anti-inflammatory effects, has emerged as a promising approach for treating previously deemed incurable conditions. This review focuses on the potential application of stem cells in subarachnoid hemorrhage pathology and explores their role in neurogenesis and as a therapeutic intervention in preclinical and clinical subarachnoid hemorrhage studies.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | | |
Collapse
|
3
|
Wang W, Wang Y, Gao L. Stem Cells Treatment for Subarachnoid Hemorrhage. Neurologist 2024:00127893-990000000-00158. [PMID: 39450602 DOI: 10.1097/nrl.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) refers to bleeding in the subarachnoid space, which is a serious neurologic emergency. However, the treatment effects of SAH are limited. In recent years, stem cell (SC) therapy has gradually become a very promising therapeutic method and advanced scientific research area for SAH. REVIEW SUMMARY The SCs used for SAH treatment are mainly bone marrow mesenchymal stem cells (BMSCs), umbilical cord mesenchymal stem cells (hUC-MSCs), dental pulp stem cells (DPSCs), neural stem cells (NSCs)/neural progenitor cell (NPC), and endothelial progenitor cell (EPC). The mechanisms mainly included differentiation and migration of SCs for tissue repair; alleviating neuronal apoptosis; anti-inflammatory effects; and blood-brain barrier (BBB) protection. The dosage of SCs was generally 106 orders of magnitude. The administration methods included intravenous injection, nasal, occipital foramen magnum, and intraventricular administration. The administration time is generally 1 hour after SAH modeling, but it may be as late as 24 hours or 6 days. Existing studies have confirmed the neuroprotective effect of SCs in the treatment of SAH. CONCLUSIONS SC has great potential application value in SAH treatment, a few case reports have provided support for this. However, the relevant research is still insufficient and there is still a lack of clinical research on the SC treatment for SAH to further evaluate the effectiveness and safety before it can go from experiment to clinical application.
Collapse
Affiliation(s)
| | | | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Xu Y, Liu Y, Wu Y, Sun J, Lu X, Dai K, Zhang Y, Luo C, Zhang J. Curcumin Alleviates Microglia-Mediated Neuroinflammation and Neuronal Ferroptosis Following Experimental Subarachnoid Hemorrhage by Modulating the Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04443-7. [PMID: 39207623 DOI: 10.1007/s12035-024-04443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Early brain injury caused by subarachnoid hemorrhage (SAH) is associated with inflammatory response and ferroptosis. Curcumin alleviates neuroinflammation and oxidative stress by as yet unknown neuroprotective mechanisms. The objective of this study was to investigate the impact of curcumin on neuronal ferroptosis and microglia-induced neuroinflammation following SAH. By examining Nrf2/HO-1 expression levels and ferroptosis biomarkers expression both in vitro and in vivo, it was demonstrated that curcumin effectively suppressed ferroptosis in neurons after SAH through modulation of the Nrf2/HO-1 signaling pathway. Furthermore, by analyzing the expression levels of Nrf2, HO-1, p-p65, and inflammation-related genes, it was confirmed that curcumin could prevent the upregulation of pro-inflammatory factors following SAH by regulating the Nrf2/HO-1/NF-κB signaling pathway in microglia. The ability of curcumin to reduce neuronal damage and cerebral edemas after SAH in mice was validated using TUNEL staining, Nissl staining, and measurement of brain tissue water content. Additionally, through implementation of the modified Garcia test, open field test, and Y-maze test, it was established that curcumin ameliorated neurobehavioral impairments in mice post-SAH. Taken together, these data suggest that curcumin may offer a promising therapeutic approach for improving outcomes following SAH by concurrently attenuating neuronal ferroptosis and reducing neuroinflammation.
Collapse
Affiliation(s)
- Yao Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiting Zhang
- Department of Rheumatology, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Ma N, Zhang M, Xu G, Zhang L, Luo M, Luo M, Wang X, Tang H, Wang X, Liu L, Zhong X, Feng J, Li Y. Mesenchymal Stem Cell-derived Type II Alveolar Epithelial Progenitor Cells Attenuate LPS-induced Acute Lung Injury and Reduce P63 Expression. Curr Stem Cell Res Ther 2024; 19:245-256. [PMID: 37138488 DOI: 10.2174/1574888x18666230501234836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
AIM Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe clinical respiratory-failure disease mainly characterized by acute damage to the alveolar epithelium and pulmonary vascular endothelial cells. Stem cell therapy has emerged as a potential regenerative strategy for ARDS/ALI, however, the outcome is limited, and the underlying mechanisms are unclear. INTRODUCTION We established a differentiation system for bone marrow-derived mesenchymal stem cellderived (BM-MSC) type II alveolar epithelial progenitor cells (AECIIs) and assessed their regulatory effects on lipopolysaccharide (LPS)-induced ALI. METHODS We induced BM-MSC differentiation into AECIIs using a specific conditioned medium. After 26 days of differentiation, 3×105 BM-MSC-AECIIs were used to treat mice with LPS-induced ALI through tracheal injection. RESULTS After tracheal injection, BM-MSC-AECIIs migrated to the perialveolar area and reduced LPSinduced lung inflammation and pathological injury. RNA-seq suggested that P63 protein was involved in the effects of BM-MSC-AECIIs on lung inflammation. CONCLUSION Our results suggest that BM-MSC-AECIIs may reduce LPS-induced acute lung injury by decreasing P63 expression.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mengwei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Min Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meihua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuying Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
6
|
Xin Q, Zhu W, He C, Liu T, Wang H. The effect of different sources of mesenchymal stem cells on microglia states. Front Aging Neurosci 2023; 15:1237532. [PMID: 37693651 PMCID: PMC10483832 DOI: 10.3389/fnagi.2023.1237532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Microglial reaction plays a key role in the prognosis of traumatic CNS injuries (TBI and SCI). A growing number of studies have shown that mesenchymal stem cells (MSCs) play an important role in regulating microglial states. This review summarizes the effects and mechanisms of different sources of MSCs on microglial states in the last 5 years. In general, bone marrow-derived mesenchymal stem cells are the most accessible and widely used, and can produce immunosuppressive effects on a variety of brain injuries including TBI through tissue engineering in situ implantation; MSCs mainly regulate inflammatory pathways and promote the states of microglia in the anti-inflammatory direction, which also secrete certain cytokines or extracellular vesicles to affect apoptotic pathways, such as the extracellular vesicles miR-21-5p, acting as a neuronal protector.
Collapse
Affiliation(s)
| | | | | | | | - Haifeng Wang
- Department of Neurotrauma Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Li C, Lu P, Zhang L, He Y, Zhang L, Yang L, Zhang F, Kong X, Tao Q, Zhou J, Wu J, Peng T, Xie B, Jiang Y, Peng J. Apolipoprotein E Polymorphism Impacts White Matter Injury Through Microglial Phagocytosis After Experimental Subarachnoid Hemorrhage. Neuroscience 2023; 524:220-232. [PMID: 37290684 DOI: 10.1016/j.neuroscience.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene), divided into three alleles of E2, E3 and E4 in humans, is associated with the progression of white matter lesion load. However, mechanism evidence has not been reported regarding the APOE genotype in early white matter injury (WMI) under subarachnoid hemorrhage (SAH) conditions. In the present study, we investigated the effects of APOE gene polymorphisms, by constructing microglial APOE3 and APOE4-specific overexpression, on WMI and underlying mechanisms of microglia phagocytosis in a mice model of SAH. A total of 167 male C57BL/6J mice (weight 22-26 g) were used. SAH and bleeding environment were induced by endovascular perforation in vivo and oxyHb in vitro, respectively. Multi-technology approaches, including immunohistochemistry, high throughput sequencing, gene editing for adeno-associated viruses, and several molecular biotechnologies were used to validate the effects of APOE polymorphisms on microglial phagocytosis and WMI after SAH. Our results revealed that APOE4 significantly aggravated the WMI and decreased neurobehavioral function by impairing microglial phagocytosis after SAH. Indicators negatively associated with microglial phagocytosis increased like CD16, CD86 and the ratio of CD16/CD206, while the indicators positively associated with microglial phagocytosis decreased like Arg-1 and CD206. The increased ROS and aggravating mitochondrial damage demonstrated that the damaging effects of APOE4 in SAH may be associated with microglial oxidative stress-dependent mitochondrial damage. Inhibiting mitochondrial oxidative stress by Mitoquinone (mitoQ) can enhance the phagocytic function of microglia. In conclusion, anti-oxidative stress and phagocytosis protection may serve as promising treatments in the management of SAH.
Collapse
Affiliation(s)
- Chaojie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peng Lu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lihan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lei Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xi Kong
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Qianke Tao
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jinpeng Wu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tangming Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China.
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Tao Q, Qiu X, Li C, Zhou J, Gu L, Zhang L, Pang J, Zhang L, Yin S, Jiang Y, Peng J. S100A8 regulates autophagy-dependent ferroptosis in microglia after experimental subarachnoid hemorrhage. Exp Neurol 2022; 357:114171. [PMID: 35870523 DOI: 10.1016/j.expneurol.2022.114171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Targeting microglial activation has been shown to ameliorate early brain injury (EBI) after subarachnoid hemorrhage (SAH). Ferroptosis is a new form of programmed cell death after SAH, but these molecular features were not recognized as evidence of microglial function so far. In this study, we constructed microglial S100A8-specific knockdown and established the SAH model in vivo and in vitro. Multi-technology strategies, including high throughput sequencing, adeno-associated virus gene gene-editing and several molecular biotechnologies to validate the effects of S100A8 on microglial autophagy and ferroptosis after SAH. Our results revealed that the expression of S100A8 was significantly increased in brain tissue after SAH. Targeted microglial S100A8 inhibition improved neural function and neuronal apoptosis in mice after SAH. Further mechanism exploration found that favourable effects of S100A8 depletion in EBI may be through the inhibition of microglia autophagy-dependent ferroptosis. In conclusion, S100A8 may be a potential intervention target for microglial ferroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Qianke Tao
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiancheng Qiu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chaojie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lihan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Qian Y, Li Q, Chen L, Sun J, Cao K, Mei Z, Lu X. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate M1 Microglial Activation in Brain Injury of Mice With Subarachnoid Hemorrhage via microRNA-140-5p Delivery. Int J Neuropsychopharmacol 2022; 25:328-338. [PMID: 35015859 PMCID: PMC9017768 DOI: 10.1093/ijnp/pyab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND It is documented that mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs) to modulate subarachnoid hemorrhage (SAH) development. miR-140-5p expression has been detected in MSC-derived EVs, while the mechanism of MSC-derived EVs containing miR-140-5p in SAH remains unknown. We aim to fill this void by establishing SAH mouse models and extracting MSCs and MSC-EVs. METHODS After ALK5 was silenced in SAH mice, neurological function was evaluated, neuron apoptosis was detected by TdT-mediated dUTP-biotin nick end labeling with NeuN staining, and expression of serum inflammatory factors (interleukin-6, interleukin-1β, and tumor necrosis factor-α) was determined by enzyme-linked immunosorbent assay. The effect of ALK5 on NOX2 expression was assessed by western-blot analysis. Targeting the relationship between miR-140-5p and ALK5 was evaluated by dual luciferase assay. Following extraction of MSCs and MSC-EVs, EVs and miR-140-5p were labeled by PKH67 and Cy3, respectively, to identify the transferring of miR-140-5p by MSC-EVs. SAH mice were treated with EVs from miR-140-5p mimic/inhibitor-transfected MSCs to detect effects of MSC-EV-miR-140-5p on brain injury and microglial polarization. RESULTS ALK5 silencing increased the neurological score and reduced neuron apoptosis and neuroinflammation in SAH mice. ALK5 silencing inhibited M1 microglia activation by inactivating NOX2. ALK5 was a target gene of miR-140-5p. MSC-derived EVs contained miR-140-5p and transferred miR-140-5p into microglia. MSC-EV-delivered miR-140-3p reduced ALK5 expression to contribute to repression of brain injury and M1 microglia activation in SAH mice. CONCLUSIONS MSC-derived EVs transferred miR-140-5p into microglia to downregulate ALK5 and NOX2, thus inhibiting M1 microglia activation in SAH mice.
Collapse
Affiliation(s)
- Yu Qian
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Qiaoyu Li
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Lulu Chen
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, P.R. China
| | - Jinyu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kan Cao
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Zhaojun Mei
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| | - Xinyu Lu
- Department of Neurosurgery, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Neurosurgery, Nanjing Medical University Affiliated Zhenjiang First People’s Hospital, Zhenjiang, P.R. China
| |
Collapse
|
11
|
Qu W, Cheng Y, Peng W, Wu Y, Rui T, Luo C, Zhang J. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Mol Neurobiol 2022; 59:3124-3139. [PMID: 35262869 DOI: 10.1007/s12035-022-02788-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023]
Abstract
Numerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH. Thus, reducing the number of M1 microglia represents a potential target for therapies to improve outcomes after SAH. Previous studies have found that inducible nitric oxide synthase (iNOS/NO•) plays an essential role in promoting the survival of M1 microglia by blocking ferroptosis. Ferroptosis is a new type of iron-dependent cellular procedural death associated with pathological cell death related to mammalian degenerative diseases, cerebral hemorrhage, and traumatic brain injury. Here, we investigated the effect of L-NIL, an inhibitor of iNOS, on M1 microglia, neuroinflammation, neuronal cell death, brain edema, and neurological function in an experimental SAH model in vivo and in vitro. We found that L-NIL reduced the number of M1 microglia and alleviated neuroinflammation following SAH. Notably, treatment with L-NIL relieves brain edema and neuronal injury and improves outcomes of neurological function after SAH in rats. Mechanistically, we found that L-NIL inhibited the expression of iNOS and promoted ferroptosis of M1 microglia by increasing the expression of ferroptosis-related proteins and lipid peroxidation in an in vitro model of SAH, which was reversed by a ferroptosis inhibitor, liproxstatin-1. In addition, inhibiting iNOS had no significant effect on ferroptosis of neurons after oxyhemoglobin stimulation in vitro. Thus, our research demonstrated that inhibition of iNOS might represent a potential therapeutic strategy to improve outcomes after SAH by promoting ferroptosis of M1 microglia and reducing neuroinflammation.
Collapse
Affiliation(s)
- Wenhao Qu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Wei Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Yan Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China.
| |
Collapse
|
12
|
He J, Liu J, Huang Y, Lan Z, Tang X, Hu Z. Mesenchymal stem cells-derived therapies for subarachnoid hemorrhage in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2022; 13:42. [PMID: 35093176 PMCID: PMC8800223 DOI: 10.1186/s13287-022-02725-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) and MSCs-derived extracellular vesicles (EVs) have emerged as potential novel therapies for subarachnoid hemorrhage (SAH). However, their effects remain incompletely understood. We aim to comprehensively evaluate the effect of MSCs-derived therapies in rodent models of SAH. Methods We searched PubMed, EMBASE, and Web of Science up to September 2021 to identify studies that reported the effects of MSCs or MSCs-derived EVs in a rodent SAH model. Neurobehavioral score was extracted as the functional outcome, and brain water content was measured as the histopathological outcome. A random-effects model was used to calculate the standardized mean difference (SMD) and confidence interval (CI). Results Nine studies published from 2018 to 2021 met the inclusion criteria. Studies quality scores ranged from 5 to 10, with a mean value of 7.22. Our results revealed an overall positive effect of MSCs and MSCs-derived EVs on the neurobehavioral score with a SMD of − 2.21 (95% CI − 3.14, − 1.08; p < 0.0001). Meanwhile, we also found that MSCs and MSCs-derived EVs reduced brain water content by a SMD of − 2.09 (95% CI − 2.99, − 1.19; p < 0.00001). Significant heterogeneity among studies was observed, further stratified and sensitivity analyses did not identify the source of heterogeneity. Conclusions Our results suggested that MSCs-derived therapies prominently improved functional recovery and reduced brain edema in the rodent models of SAH. Notably, the limitations of small sample size should be considered when interpreting the results, and large animal studies and human trials are needed for further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02725-2.
Collapse
|
13
|
Liu Z, Wang B, Guo Q. MiR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway. Brain Res Bull 2021; 175:107-115. [PMID: 34284075 DOI: 10.1016/j.brainresbull.2021.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Early brain injury (EBI) is a major cause of adverse outcomes following subarachnoid hemorrhage (SAH). There is evidence that mesenchymal stem cells (MSCs) - derived exosomes are involved in the repair of SAH. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hubMSCs) and identified. OxyHb treated PC12 cells were transfected with exosomes alone or together with miR-26b-5p inhibitor. Hub-MSCs derived exosomes promote cell proliferation, inhibit apoptosis and reduce inflammatory mediator expression. Transfection of miR-26b-5p inhibitor abolished the promoting effect of exosomes on the proliferation of PC12 cells, as well as the inhibitory effect on cell apoptosis. In addition, methionine adenosyltransferase II alpha (MAT2A) was one target gene of miR-26b-5p. OxyHb treated PC12 cells were transfected with exosomes alone or together with pcDNA-MAT2A and observed that the promoting effect of exosomes on PC12 cell proliferation was abolished by pcDNA-MAT2A, which was the same as the effect of miR-26b-5p inhibitor. OxyHb treated PC cells incubated with exosomes were transfected with miR-26b-5p inhibitor alone or together with si-MAT2A, respectively, and it was observed that exosomes decreased the phosphorylation levels of p38 MAPK and STAT3 proteins, inhibited cell apoptosis and inflammatory mediator expression, and miR-26b-5p inhibitor abrogated the effects of exosomes, while transfection of si-MAT2A reversed the effects of miR-26b-5p inhibitor. Moreover, injection of miR-26b-5p inhibitor resulted in increased MAT2A and pathway protein expression, increased inflammatory mediators, and aggravated neurological symptoms in the brain tissues of SAH rats.
Collapse
Affiliation(s)
- Zunwei Liu
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Bo Wang
- Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qihang Guo
- Department of Renal Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
14
|
Zhang L, Guo K, Zhou J, Zhang X, Yin S, Peng J, Liao Y, Jiang Y. Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. J Neurochem 2021; 158:880-897. [PMID: 34143505 DOI: 10.1111/jnc.15457] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
As an important initiator and responder of brain inflammation in the central nervous system (CNS), astrocytes transform into two new reactive phenotypes with changed morphology, altered gene expression and secretion profiles, termed detrimental A1 and beneficial A2. Inflammatory events have been shown to occur during the phase of early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the phenotype transformation of astrocytes as well as its potential contribution to inflammatory status in the EBI of SAH has yet to be determined. In the present study, both in vivo and in vitro models of SAH were established, and the polarization of astrocytes after SAH was analyzed by RNA-seq, western blotting, and immunofluorescence staining. The effect of astrocytic phenotype transformation on neuroinflammation was examined by real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that astrocytes were transformed into A1 astrocytes and caused neuronal death through the release of pro-inflammatory factors in EBI after SAH. Importantly, Ponesimod, an S1PR1 specific modulator, exerted neuroprotective effects through the prevention of astrocytic polarization to the A1 phenotype as proved by immunofluorescence, neurological tests, and TUNEL study. We also revealed the role of Ponesimod in modulating astrocytic response was mediated by the signal transducer and activator of transcription 3 (STAT3) signaling. Our study suggested that Ponesimod may be a promising therapeutic target for the treatment of brain injury following SAH.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuyan Liao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Clinical Medical Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Neurological Disease and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Wang Q, He H, Xie S, Wei Q, He C. Mesenchymal Stem Cells Transplantation for Neuropathic Pain Induced By Peripheral Nerve Injury in Animal Models: A Systematic Review. Stem Cells Dev 2020; 29:1420-1428. [PMID: 32962522 DOI: 10.1089/scd.2020.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain is defined as a lesion or disease of the somatosensory system, currently remaining a challenging condition to treat. Mesenchymal stem cells (MSCs) transplantation is emerging as a promising strategy to alleviate the neuropathic pain conditions induced by peripheral nerve injury. The aim of this systematic review was to assess the efficacy and safety of MSCs transplantation in neuropathic pain induced by peripheral nerve injury in controlled animal studies, and thus to yield evidence-based decision making. Following the PRISMA guidelines, PubMed, Cochrane Central Library, Embase, and CINAHL were searched for preclinical controlled animal studies from the inception to April 16, 2020. Seventeen studies are included in this review. Substantial heterogeneity is observed regarding the animal's species, models of neuropathic pain, regimen of MSCs transplantation, and outcome of measures across the included studies. Both mechanical allodynia and thermal hyperalgesia could be significantly attenuated by transplanted MSCs. The MSCs-elicited analgesic effect is independent of the type of MSCs, time of administration, and route of delivery, and is efficiently enhanced by genetic transfection with fibroblast growth factor, proenkephalin, and glial cell line-derived neurotrophic factor. The migration of MSCs after intrathecal or intravenous injection has been shown to be directed toward the surface of dorsal spinal cord or dorsal root ganglions on the ipsilateral side of injury. No adverse effects have been reported. The accumulating evidence demonstrates the therapeutic effect of MSCs-based cell therapy on prevention and alleviation of the neuropathic pain induced by peripheral nerve injury in rat or mouse models. The robust preclinical studies are deserved to optimize the regimen of MSCs transplantation and to promote the translation of the MSCs-based therapy into clinical studies.
Collapse
Affiliation(s)
- Qian Wang
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Hongchen He
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Shuhang Xie
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Quan Wei
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Chengqi He
- Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Rehabilitation Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|