1
|
Yu Q, Gravish N. Multimodal Locomotion in a Soft Robot Through Hierarchical Actuation. Soft Robot 2024; 11:21-31. [PMID: 37471221 DOI: 10.1089/soro.2022.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Soft and continuum robots present the opportunity for extremely large ranges of motion, which can enable dexterous, adaptive, and multimodal locomotion behaviors. However, as the number of degrees of freedom (DOF) of a robot increases, the number of actuators should also increase to achieve the full actuation potential. This presents a dilemma in mobile soft robot design: physical space and power requirements restrict the number and type of actuators available and may ultimately limit the movement capabilities of soft robots with high-DOF appendages. Restrictions on actuation of continuum appendages ultimately may limit the various movement capabilities of soft robots. In this work, we demonstrate multimodal behaviors in an underwater robot called "Hexapus." A hierarchical actuation design for multiappendage soft robots is presented in which a single high-power motor actuates all appendages for locomotion, while smaller low-power motors augment the shape of each appendage. The flexible appendages are designed to be capable of hyperextension for thrust, and flexion for grasping with a peak pullout force of 32 N. For propulsion, we incorporate an elastic membrane connected across the base of each tentacle, which is stretched slowly by the high-power motor and released rapidly through a slip-gear mechanism. Through this actuation arrangement, Hexapus is capable of underwater locomotion with low cost of transport (COT = 1.44 at 16.5 mm/s) while swimming and a variety of multimodal locomotion behaviors, including swimming, turning, grasping, and crawling, which we demonstrate in experiment.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, USA
| | - Nick Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, USA
| |
Collapse
|
2
|
Li Y, Li Y, Ren T, Xia J, Liu H, Wu C, Lin S, Chen Y. An Untethered Soft Robotic Dog Standing and Fast Trotting with Jointless and Resilient Soft Legs. Biomimetics (Basel) 2023; 8:596. [PMID: 38132535 PMCID: PMC10741788 DOI: 10.3390/biomimetics8080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Soft robots are compliant, impact resistant, and relatively safe in comparison to hard robots. However, the development of untethered soft robots is still a major challenge because soft legs cannot effectively support the power and control systems. Most untethered soft robots apply a crawling or walking gait, which limits their locomotion speed and mobility. This paper presents an untethered soft robot that can move with a bioinspired dynamic trotting gait. The robot is driven by inflatable soft legs designed on the basis of the pre-charged pneumatic (PCP) actuation principle. Experimental results demonstrate that the developed robot can trot stably with the fastest speed of 23 cm/s (0.97 body length per second) and can trot over different terrains (slope, step, rough terrain, and natural terrains). The robotic dog can hold up to a 5.5 kg load in the static state and can carry up to 1.5 kg in the trotting state. Without any rigid components inside the legs, the developed robotic dog exhibits resistance to large impacts, i.e., after withstanding a 73 kg adult (46 times its body mass), the robotic dog can stand up and continue its trotting gait. This innovative robotic system has great potential in equipment inspection, field exploration, and disaster rescue.
Collapse
Affiliation(s)
- Yunquan Li
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Yujia Li
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China;
| | - Tao Ren
- School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jiutian Xia
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Hao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China; (H.L.); (C.W.); (S.L.); (Y.C.)
| | - Changchun Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China; (H.L.); (C.W.); (S.L.); (Y.C.)
| | - Senyuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China; (H.L.); (C.W.); (S.L.); (Y.C.)
| | - Yonghua Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China; (H.L.); (C.W.); (S.L.); (Y.C.)
| |
Collapse
|
3
|
Buchner TJK, Rogler S, Weirich S, Armati Y, Cangan BG, Ramos J, Twiddy ST, Marini DM, Weber A, Chen D, Ellson G, Jacob J, Zengerle W, Katalichenko D, Keny C, Matusik W, Katzschmann RK. Vision-controlled jetting for composite systems and robots. Nature 2023; 623:522-530. [PMID: 37968527 PMCID: PMC10651485 DOI: 10.1038/s41586-023-06684-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/27/2023] [Indexed: 11/17/2023]
Abstract
Recreating complex structures and functions of natural organisms in a synthetic form is a long-standing goal for humanity1. The aim is to create actuated systems with high spatial resolutions and complex material arrangements that range from elastic to rigid. Traditional manufacturing processes struggle to fabricate such complex systems2. It remains an open challenge to fabricate functional systems automatically and quickly with a wide range of elastic properties, resolutions, and integrated actuation and sensing channels2,3. We propose an inkjet deposition process called vision-controlled jetting that can create complex systems and robots. Hereby, a scanning system captures the three-dimensional print geometry and enables a digital feedback loop, which eliminates the need for mechanical planarizers. This contactless process allows us to use continuously curing chemistries and, therefore, print a broader range of material families and elastic moduli. The advances in material properties are characterized by standardized tests comparing our printed materials to the state-of-the-art. We directly fabricated a wide range of complex high-resolution composite systems and robots: tendon-driven hands, pneumatically actuated walking manipulators, pumps that mimic a heart and metamaterial structures. Our approach provides an automated, scalable, high-throughput process to manufacture high-resolution, functional multimaterial systems.
Collapse
Affiliation(s)
| | - Simon Rogler
- Soft Robotics Lab, D-MAVT, ETH Zurich, Zurich, Switzerland
| | - Stefan Weirich
- Soft Robotics Lab, D-MAVT, ETH Zurich, Zurich, Switzerland
| | - Yannick Armati
- Soft Robotics Lab, D-MAVT, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Parra Rubio A, Fan D, Jenett B, del Águila Ferrandis J, Tourlomousis F, Abdel-Rahman A, Preiss D, Zemánek J, Triantafyllou M, Gershenfeld N. Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures. Soft Robot 2023; 10:724-736. [PMID: 36730716 PMCID: PMC10442689 DOI: 10.1089/soro.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the L ∕ D ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.
Collapse
Affiliation(s)
- Alfonso Parra Rubio
- Center for Bits and Atoms of USA, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dixia Fan
- Intelligent and Informational Fluid Mechanics Laboratory, Westlake University, Hangzhou, China
| | - Benjamin Jenett
- Discrete Lattice Industries, LLC, Laguna Beach, California, USA
| | - José del Águila Ferrandis
- Sea Grant and Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Amira Abdel-Rahman
- Center for Bits and Atoms of USA, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David Preiss
- Center for Bits and Atoms of USA, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jiri Zemánek
- Czech Technical University in Prague, Prague, Czech Republic
| | - Michael Triantafyllou
- Sea Grant and Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms of USA, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Rusu DM, Mândru SD, Biriș CM, Petrașcu OL, Morariu F, Ianosi-Andreeva-Dimitrova A. Soft Robotics: A Systematic Review and Bibliometric Analysis. MICROMACHINES 2023; 14:mi14020359. [PMID: 36838059 PMCID: PMC9961507 DOI: 10.3390/mi14020359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 05/14/2023]
Abstract
In recent years, soft robotics has developed considerably, especially since the year 2018 when it became a hot field among current research topics. The attention that this field receives from researchers and the public is marked by the substantial increase in both the quantity and the quality of scientific publications. In this review, in order to create a relevant and comprehensive picture of this field both quantitatively and qualitatively, the paper approaches two directions. The first direction is centered on a bibliometric analysis focused on the period 2008-2022 with the exact expression that best characterizes this field, which is "Soft Robotics", and the data were taken from a series of multidisciplinary databases and a specialized journal. The second direction focuses on the analysis of bibliographic references that were rigorously selected following a clear methodology based on a series of inclusion and exclusion criteria. After the selection of bibliographic sources, 111 papers were part of the final analysis, which have been analyzed in detail considering three different perspectives: one related to the design principle (biologically inspired soft robotics), one related to functionality (closed/open-loop control), and one from a biomedical applications perspective.
Collapse
Affiliation(s)
- Dan-Mihai Rusu
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- Correspondence:
| | - Silviu-Dan Mândru
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina-Maria Biriș
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Olivia-Laura Petrașcu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Fineas Morariu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | | |
Collapse
|
6
|
Dong X, Luo X, Zhao H, Qiao C, Li J, Yi J, Yang L, Oropeza FJ, Hu TS, Xu Q, Zeng H. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications. SOFT MATTER 2022; 18:7699-7734. [PMID: 36205123 DOI: 10.1039/d2sm01067d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Compared to traditional rigid-bodied robots, soft robots are constructed using physically flexible/elastic bodies and electronics to mimic nature and enable novel applications in industry, healthcare, aviation, military, etc. Recently, the fabrication of robots on soft matter with great flexibility and compliance has enabled smooth and sophisticated 'multi-degree-of-freedom' 3D actuation to seamlessly interact with humans, other organisms and non-idealized environments in a highly complex and controllable manner. Herein, we summarize the fabrication approaches, driving strategies, novel applications, and future trends of soft robots. Firstly, we introduce the different fabrication approaches to prepare soft robots and compare and systematically discuss their advantages and disadvantages. Then, we present the actuator-based and material-based driving strategies of soft robotics and their characteristics. The representative applications of soft robotics in artificial intelligence, medicine, sensors, and engineering are summarized. Also, some remaining challenges and future perspectives in soft robotics are provided. This work highlights the recent advances of soft robotics in terms of functional material selection, structure design, control strategies and biomimicry, providing useful insights into the development of next-generation functional soft robotics.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China.
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| | - Xiaohang Luo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jianhong Yi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Li Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Francisco J Oropeza
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, California 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada.
| |
Collapse
|
7
|
Abstract
Owing to COVID-19, the world has advanced faster in the era of the Fourth Industrial Revolution, along with the 3D printing technology that has achieved innovation in personalized manufacturing. Three-dimensional printing technology has been utilized across various fields such as environmental fields, medical systems, and military materials. Recently, the 3D food printer global market has shown a high annual growth rate and is a huge industry of approximately one billion dollars. Three-dimensional food printing technology can be applied to various food ranges based on the advantages of designing existing food to suit one’s taste and purpose. Currently, many countries worldwide produce various 3D food printers, developing special foods such as combat food, space food, restaurants, floating food, and elderly food. Many people are unaware of the utilization of the 3D food printing technology industry as it is in its early stages. There are various cases using 3D food printing technology in various parts of the world. Three-dimensional food printing technology is expected to become a new trend in the new normal era after COVID-19. Compared to other 3D printing industries, food 3D printing technology has a relatively small overall 3D printing utilization and industry size because of problems such as insufficient institutionalization and limitation of standardized food materials for 3D food printing. In this review, the current industrial status of 3D food printing technology was investigated with suggestions for the improvement of the food 3D printing market in the new normal era.
Collapse
|
8
|
Li D, Huang S, Tang Y, Marvi H, Tao J, Aukes DM. Compliant Fins for Locomotion in Granular Media. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3084877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Lee LY, Malik OAS, Tan CP, Nurzaman SG. Closed-Structure Compliant Gripper With Morphologically Optimized Multi-Material Fingertips for Aerial Grasping. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3052420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Yu Q, Jiang M, Gravish N. Flexoskeleton Fingers: 3D Printed Reconfigurable Ridges Enabling Multi-Functional and Low-Cost Underactuated Grasping. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3067181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Rojek I, Mikołajewski D, Dostatni E, Macko M. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. MATERIALS 2020; 13:ma13235437. [PMID: 33260398 PMCID: PMC7730732 DOI: 10.3390/ma13235437] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
While the intensity, complexity, and specificity of robotic exercise may be supported by patient-tailored three-dimensional (3D)-printed solutions, their performance can still be compromised by non-optimal combinations of technological parameters and material features. The main focus of this paper was the computational optimization of the 3D-printing process in terms of features and material selection in order to achieve the maximum tensile force of a hand exoskeleton component, based on artificial neural network (ANN) optimization supported by genetic algorithms (GA). The creation and 3D-printing of the selected component was achieved using Cura 0.1.5 software and 3D-printed using fused filament fabrication (FFF) technology. To optimize the material and process parameters we compared ten selected parameters of the two distinct printing materials (polylactic acid (PLA), PLA+) using ANN supported by GA built and trained in the MATLAB environment. To determine the maximum tensile force of the exoskeleton, samples were tested using an INSTRON 5966 universal testing machine. While the balance between the technical requirements and user safety constraints requires further analysis, the PLA-based 3D-printing parameters have been optimized. Additive manufacturing may support the successful printing of usable/functional exoskeleton components. The network indicated which material should be selected: Namely PLA+. AI-based optimization may play a key role in increasing the performance and safety of the final product and supporting constraint satisfaction in patient-tailored solutions.
Collapse
Affiliation(s)
- Izabela Rojek
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-32-57-630
| | - Dariusz Mikołajewski
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Ewa Dostatni
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marek Macko
- Department of Mechatronics, Kazimierz Wielki University in Bydgoszcz, 85-064 Bydgoszcz, Poland;
| |
Collapse
|