1
|
Sabrin S, Hong SH, Karmokar DK, Habibullah H, Fitridge R, Short RD, Szili EJ. Healing wounds with plasma-activated hydrogel therapy. Trends Biotechnol 2024:S0167-7799(24)00190-2. [PMID: 39209604 DOI: 10.1016/j.tibtech.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wound infections are a silent pandemic in danger of becoming a global healthcare crisis. Innovations to control infections and improve healing are required. In the context of this challenge, researchers are exploiting plasma-activated hydrogel therapy (PAHT) for use either alone or in combination with other antimicrobial strategies. PAHT involves the cold atmospheric pressure plasma activation of hydrogels with reactive oxygen and nitrogen species to decontaminate infections and promote healing. This opinion article describes PAHT for wound treatment and provides an overview of current research and outstanding challenges in translating the technology for medical use. A 'blueprint' of an autonomous PAHT is presented in the final section that can move the management and treatment of wounds from the clinical setting to the community.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Robert Fitridge
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Vascular and Endovascular Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK.
| | - Endre J Szili
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
2
|
Liu C, Chen Y, Bai H, Niu Y, Wu Y. Characterization and application of in situ curcumin/ZNP hydrogels for periodontitis treatment. BMC Oral Health 2024; 24:395. [PMID: 38549147 PMCID: PMC10976734 DOI: 10.1186/s12903-024-04054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- College of Life Science, Sichuan University, No.24, 1st South Section, Yihuan Road, Chengdu, 610065, Sichuan, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Laurano R, Boffito M, Ciardelli G, Chiono V. Wound Dressing Products: a Translational Investigation from the Bench to the Market. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
4
|
Škoro N, Živković S, Jevremović S, Puač N. Treatment of Chrysanthemum Synthetic Seeds by Air SDBD Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070907. [PMID: 35406888 PMCID: PMC9003063 DOI: 10.3390/plants11070907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Herein, we present the effect of surface dielectric barrier discharge (SDBD) air cold plasma on regrowth of chrysanthemum synthetic seeds (synseeds) and subsequent plantlet development. The plasma system used in this study operates in air at the frequency of 50 Hz. The detailed electrical characterization of SDBD was shown, as well as air plasma emission spectra obtained by optical emission spectroscopy. The chrysanthemum synseeds (encapsulated shoot tips) were treated in air plasma for different treatment times (0, 5 or 10 min). Plasma treatment significantly improved the regrowth and whole plantlet development of chrysanthemum synseeds under aseptic (in vitro) and non-aseptic (ex vitro) conditions. We evaluated the effect of SDBD plasma on synseed germination of four chrysanthemum cultivars after direct sowing in soil. Germination of synseeds directly sowed in soil was cultivar-dependent and 1.6-3.7 fold higher after plasma treatment in comparison with untreated synseeds. The study showed a highly effective novel strategy for direct conversion of simple monolayer alginate chrysanthemum synseeds into entire plantlets by plasma pre-conversion treatment. This treatment reduced contamination and displayed a considerable ex vitro ability to convert clonally identical chrysanthemum plants.
Collapse
Affiliation(s)
- Nikola Škoro
- Institute of Physics-National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Suzana Živković
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Boulevard 142, 11000 Belgrade, Serbia
| | - Slađana Jevremović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Boulevard 142, 11000 Belgrade, Serbia
| | - Nevena Puač
- Institute of Physics-National Institute of Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front Microbiol 2021; 12:737635. [PMID: 34712211 PMCID: PMC8546340 DOI: 10.3389/fmicb.2021.737635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Department of Biotechnology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Ramya Premanath
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Iddya Karunasagar
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
6
|
Di Bonaventura G, Pompilio A. In Vitro Antimicrobial Susceptibility Testing of Biofilm-Growing Bacteria: Current and Emerging Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:33-51. [PMID: 33963526 DOI: 10.1007/5584_2021_641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antibiotic susceptibility of bacterial pathogens is typically determined based on planktonic cells, as recommended by several international guidelines. However, most of chronic infections - such as those established in wounds, cystic fibrosis lung, and onto indwelling devices - are associated to the formation of biofilms, communities of clustered bacteria attached onto a surface, abiotic or biotic, and embedded in an extracellular matrix produced by the bacteria and complexed with molecules from the host. Sessile microorganisms show significantly increased tolerance/resistance to antibiotics compared with planktonic counterparts. Consequently, antibiotic concentrations used in standard antimicrobial susceptibility tests, although effective against planktonic bacteria in vitro, are not predictive of the concentrations required to eradicate biofilm-related infections, thus leading to treatment failure, chronicization and removal of material in patients with indwelling medical devices.Meeting the need for the in vitro evaluation of biofilm susceptibility to antibiotics, here we reviewed several methods proposed in literature highlighting their advantages and limitations to guide scientists towards an appropriate choice.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Laboratory of Clinical Microbiology, Chieti, Italy.
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Laboratory of Clinical Microbiology, Chieti, Italy
| |
Collapse
|
7
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
8
|
Nilsen‐Nygaard J, Fernández EN, Radusin T, Rotabakk BT, Sarfraz J, Sharmin N, Sivertsvik M, Sone I, Pettersen MK. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr Rev Food Sci Food Saf 2021; 20:1333-1380. [DOI: 10.1111/1541-4337.12715] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Julie Nilsen‐Nygaard
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | | | - Tanja Radusin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Bjørn Tore Rotabakk
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Jawad Sarfraz
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Nusrat Sharmin
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Morten Sivertsvik
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Izumi Sone
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| | - Marit Kvalvåg Pettersen
- Food Division Norwegian Institute of Food, Fisheries and Aquaculture (Nofima AS) Tromsø Norway
| |
Collapse
|
9
|
Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr 2021; 62:3453-3470. [PMID: 33393810 DOI: 10.1080/10408398.2020.1865872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix, which contribute to hygiene problems in the food and medical fields. Both spoilage and pathogenic bacteria that grow in the complex structure of biofilm are more resistant to harsh environmental conditions and conventional antimicrobial agents. Therefore, it is important to develop eco-friendly preventive methodologies to eliminate biofilms from foods and food contact equipment. The present paper gives an overview of the current physical methods for biofilm control and removal. Current physical strategies adopted for the anti-biofilm treatment mainly focused on use of ultrasound power, electric or magnetic field, plasma, and irradiation. Furthermore, the mechanisms of anti-biofilm action and application of different physical methods are discussed. Physical strategies make it possible to combat biofilm without the use of biocidal agents. The remarkable microbiocidal properties of physical strategies are promising tools for antimicrobial applications.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Quanfeng Huang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xin-An Zeng
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
10
|
Zhou X, Cai D, Xiao S, Ning M, Zhou R, Zhang S, Chen X, Ostrikov K, Dai X. InvivoPen: A novel plasma source for in vivo cancer treatment. J Cancer 2020; 11:2273-2282. [PMID: 32127954 PMCID: PMC7052936 DOI: 10.7150/jca.38613] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022] Open
Abstract
Background: With the anti-cancer efficacies of cold atmospheric plasma being increasingly recognized in vitro, a demand on creating an effective tool feasible for in vivo animal treatment has emerged. Methods: Through the use of co-axial needles with different calibers in diameter, we designed a novel in situ ejection source of cold atmospheric plasma, namely invivoPen, for animal experiments. It punches just a single pinhole that could considerably ease the complexity of operating with small animals such as mouse. Results: We showed that invivoPen could deliver similar efficacies as plasma activated medium with reduced cost in suppressing cell proliferation and migration as well as potentially boosting the viabilities of mice receiving invivoPen treatment. Blood test, renal and liver functionalities tests all suggest that physical plasma could effectively return tumor-carrying mice to the healthy state without harm to body conditions, and invivoPen slightly outweighs PAM in boosting animal immunity and reducing inflammation. Conclusion: Our study contributes to the community in providing a minimal invasive in situ plasma source, having partly explained the efficacies of cold atmospheric plasma in treating triple negative breast cancers, and proposing the potential synergies between physical plasma and conventional drugs for cancer treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Meng Ning
- School of Mechanical Engineering, Jiangnan University ,Jiangsu Wuxi 214122, China
- Laboratory of Advanced Food Manufacturing Technology of Jiangsu Province, Jiangnan University, Jiangsu Wuxi 214122, China
| | - Renwu Zhou
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kostya Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- ✉ Corresponding author: Xiaofeng Dai, , Mobile: +86 18168870169
| |
Collapse
|
11
|
Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7585486. [PMID: 31915703 PMCID: PMC6930797 DOI: 10.1155/2019/7585486] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The skin and its microbiota serve as physical barriers to prevent invasion of pathogens. Skin damage can be a consequence of illness, surgery, and burns. The most effective wound management strategy is to prevent infections, promote healing, and prevent excess scarring. It is well established that probiotics can aid in skin healing by stimulating the production of immune cells, and they also exhibit antagonistic effects against pathogens via competitive exclusion of pathogens. Our aim was to conduct a review of recent literature on the efficacy of using probiotics against pathogens that cause wound infections. In this integrative review, we searched through the literature published in the international following databases: PubMed, ScienceDirect, Web of Science, and Scopus using the search terms “probiotic” AND “wound infection.” During a comprehensive review and critique of the selected research, fourteen in vitro studies, 8 animal studies, and 19 clinical studies were found. Two of these in vitro studies also included animal studies, yielding a total of 39 articles for inclusion in the review. The most commonly used probiotics for all studies were well-known strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus. All in vitro studies showed successful inhibition of chosen skin or wound pathogens by the selected probiotics. Within the animal studies on mice, rats, and rabbits, probiotics showed strong opportunities for counteracting wound infections. Most clinical studies showed slight or statistically significant lower incidence of surgical site infections, foot ulcer infection, or burn infections for patients using probiotics. Several of these studies also indicated a statistically significant wound healing effect for the probiotic groups. This review indicates that exogenous and oral application of probiotics has shown reduction in wound infections, especially when used as an adjuvant to antibiotic therapy, and therefore the potential use of probiotics in this field remains worthy of further studies, perhaps focused more on typical skin inhabitants as next-generation probiotics with high potential.
Collapse
|
12
|
Julák J, Scholtz V, Vaňková E. Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol 2018; 34:178. [PMID: 30456518 DOI: 10.1007/s11274-018-2560-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
In recent decades, the non-thermal plasma, i.e. partially or completely ionized gas produced by electric discharges at ambient temperature, has become of interest for its microbiocidal properties with potential of use in the food industry or medicine. Recently, this interest focuses not only on the planktonic forms of microorganisms but also on their biofilms. The works in this interdisciplinary field are summarized in this review. The wide range of biofilm-plasma interactions is divided into studies of general plasma action on bacteria, on biofilm and on its oral and dental application; a short overview of plasma instrumentation is also included. In addition, not only biofilm combating but also an important area of biofilm prevention is discussed. Various DC discharges of the point-to-plane type. Author's photograph, published in Khun et al. (Plasma Sources Sci Technol 27:065002, 2018).
Collapse
Affiliation(s)
- Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Studničkova 7, 128 00, Prague 2, Czech Republic.
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Eva Vaňková
- Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
13
|
Prevention of bacterial colonization on non-thermal atmospheric plasma treated surgical sutures for control and prevention of surgical site infections. PLoS One 2018; 13:e0202703. [PMID: 30183745 PMCID: PMC6124751 DOI: 10.1371/journal.pone.0202703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Surgical site infections have a remarkable impact on morbidity, extended hospitalization and mortality. Sutures strongly contribute to development of surgical site infections as they are considered foreign material in the human body. Sutures serve as excellent surfaces for microbial adherence and subsequent colonization, biofilm formation and infection on the site of a surgery. Various antimicrobial sutures have been developed to prevent suture-mediated surgical site infection. However, depending on the site of surgery, antimicrobial sutures may remain ineffective, and antimicrobial agents on them might have drawbacks. Plasma, defined as the fourth state of matter, composed of ionized gas, reactive oxygen and nitrogen species, free radical and neutrals, draws attention for the control and prevention of hospital-acquired infections due to its excellent antimicrobial activities. In the present study, the efficacy of non-thermal atmospheric plasma treatment for prevention of surgical site infections was investigated. First, contaminated poly (glycolic-co-lactic acid), polyglycolic acid, polydioxanone and poly (glycolic acid-co-caprolactone) sutures were treated with non-thermal atmospheric plasma to eradicate contaminating bacteria like Staphylococcus aureus and Escherichia coli. Moreover, sutures were pre-treated with non-thermal atmospheric plasma and then exposed to S. aureus and E. coli. Our results revealed that non-thermal atmospheric plasma treatment effectively eradicates contaminating bacteria on sutures, and non-thermal atmospheric plasma pre-treatment effectively prevents bacterial colonization on sutures without altering their mechanical properties. Chemical characterization of sutures was performed with FT-IR and XPS and results showed that non-thermal atmospheric plasma treatment substantially increased the hydrophilicity of sutures which might be the primary mechanism for the prevention of bacterial colonization. In conclusion, plasma-treated sutures could be considered as novel alternative materials for the control and prevention of surgical site infections.
Collapse
|
14
|
Arik N, Inan A, Ibis F, Demirci EA, Karaman O, Ercan UK, Horzum N. Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2409-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Ercan U, Sen B, Brooks A, Joshi S. Escherichia coli
cellular responses to exposure to atmospheric‐pressure dielectric barrier discharge plasma‐treated N‐acetylcysteine solution. J Appl Microbiol 2018; 125:383-397. [DOI: 10.1111/jam.13777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
- U.K. Ercan
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - B. Sen
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - A.D. Brooks
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - S.G. Joshi
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
- School of Biomedical Engineering, Science and Health Systems Drexel University Philadelphia PA USA
- A.J. Drexel Plasma Institute, Drexel University Philadelphia PA USA
| |
Collapse
|
16
|
|
17
|
López-Callejas R, Peña-Eguiluz R, Valencia-Alvarado R, Mercado-Cabrera A, Rodríguez-Méndez BG, Serment-Guerrero JH, Cabral-Prieto A, González-Garduño AC, Domínguez-Cadena NA, Muñoz-Infante J, Betancourt-Ángeles M. Alternative method for healing the diabetic foot by means of a plasma needle. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Mohd Nasir N, Lee BK, Yap SS, Thong KL, Yap SL. Cold plasma inactivation of chronic wound bacteria. Arch Biochem Biophys 2016; 605:76-85. [PMID: 27046340 DOI: 10.1016/j.abb.2016.03.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here.
Collapse
Affiliation(s)
- N Mohd Nasir
- Plasma Research Laboratory, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - B K Lee
- Plasma Research Laboratory, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S S Yap
- Faculty of Engineering, Multimedia University, Cyberjaya, 63100, Selangor, Malaysia
| | - K L Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S L Yap
- Plasma Research Laboratory, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Wound Dressing Model of Human Umbilical Cord Mesenchymal Stem Cells-Alginates Complex Promotes Skin Wound Healing by Paracrine Signaling. Stem Cells Int 2015; 2016:3269267. [PMID: 26880953 PMCID: PMC4736208 DOI: 10.1155/2016/3269267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose. To probe growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured with alginate gel scaffolds, and to explore feasibility of wound dressing model of hUCMSCs-alginates compound. Methods. hUCMSCs were isolated, cultured, and identified in vitro. Then cells were cultivated in 100 mM calcium alginate gel, and the capacity of proliferation and migration and the expression of vascular endothelial growth factors (VEGF) were investigated regularly. Wound dressing model of hUCMSCs-alginate gel mix was transplanted into Balb/c mice skin defects. Wound healing rate and immunohistochemistry were examined. Results. hUCMSCs grew well but with little migration ability in the alginate gel. Compared with control group, a significantly larger cell number and more VEGF expression were shown in the gel group after culturing for 3–6 days (P < 0.05). In addition, a faster skin wound healing rate with more neovascularization was observed in the hUCMSCs-alginate gel group than in control groups at 15th day after surgery (P < 0.05). Conclusion. hUCMSCs can proliferate well and express massive VEGF in calcium alginate gel porous scaffolds. Wound dressing model of hUCMSCs-alginate gel mix can promote wound healing through paracrine signaling.
Collapse
|
20
|
Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation. J Comput Aided Mol Des 2015; 29:1123-36. [DOI: 10.1007/s10822-015-9881-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 01/31/2023]
|
21
|
Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication. Biointerphases 2015; 10:029404. [PMID: 25869456 DOI: 10.1116/1.4914382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilms are three-dimensional structures formed by surface-attached microorganisms and their extracellular products. Biofilms formed by pathogenic microorganisms play an important role in human diseases. Higher resistance to antimicrobial agents and changes in microbial physiology make treating biofilm infections very complex. Atmospheric pressure nonthermal plasmas (NTPs) are a novel and powerful tool for antimicrobial treatment. The microbicidal activity of NTPs has an unspecific character due to the synergetic actions of bioactive components of the plasma torch, including charged particles, reactive species, and UV radiation. This review focuses on specific traits of biofilms, their role in human diseases, and those effects of NTP that are helpful for treating biofilm infections. The authors discuss NTP-based strategies for biofilm control, such as surface modifications to prevent bacterial adhesion, killing bacteria in biofilms, and biofilm destruction with NTPs. The unspecific character of microbicidal activity, proven polymer modification and destruction abilities, low toxicity for human tissues and absence of long-living toxic compounds make NTPs a very promising tool for biofilm prevention and control.
Collapse
|
22
|
Ercan UK, Joshi SS, Yost A, Gogotsi N, O’Toole S, Paff M, Melchior E, Joshi SG. Inhibition of Biofilms by Non-Thermal Plasma Treated Novel Solutions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.416128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|