1
|
Vogeler M, Schenz J, Müller E, Weigand M, Fischer D. [The Immune System of the Critically Ill Patient]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:96-112. [PMID: 38354730 DOI: 10.1055/a-2070-3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Critically ill patients often experience a dysregulated immune response, leading to immune dysfunction. Sepsis, trauma, severe infections, and certain medical conditions can trigger a state of systemic inflammation, known as the cytokine storm. This hyperactive immune response can cause collateral damage to healthy tissues and organs, exacerbating the patient's condition. On the other hand, some critically ill patients may suffer from immune paralysis which can increase the risk of nosocomial infections.Fever is an evolutionary adaptation that evolved as an effective defense mechanism to fight invading pathogens. By raising body temperature, fever enhances the immune response, inhibits pathogen growth, promotes recovery, and aids in the formation of immune memory. Understanding the role of fever in the context of immune defense is crucial for optimizing medical interventions and supporting the body's natural ability to combat infections.Future Directions: Advancements in immunology research and technology hold promise for better understanding the immune system's complexities in critically ill patients. Personalized medicine approaches may be developed to tailor therapies to individual patients based on their immune profile, optimizing treatment outcomes. Based on recent studies prognostic parameters such as lymphocyte count, IL-10 concentration and mHLA-DR expression can be used to stratify the immunological response pattern in septic patients.Conclusion: The immune system's response in critically ill patients is a multifaceted process, involving intricate interactions between various immune cells, cytokines, and organs. Striking the delicate balance between immune activation and suppression remains a significant challenge in clinical practice. Continued research and therapeutic innovations are vital to improve patient outcomes and reduce the burden of critical illness on healthcare systems.
Collapse
|
2
|
Bohne A, Grundler E, Knüttel H, Fürst A, Völkel V. Influence of Laparoscopic Surgery on Cellular Immunity in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3381. [PMID: 37444491 DOI: 10.3390/cancers15133381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The main treatment options are laparoscopic (LS) and open surgery (OS), which might differ in their impact on the cellular immunity so indispensable for anti-infectious and antitumor defense. MEDLINE, Embase, Web of Science (SCI-EXPANDED), the Cochrane Library, Google Scholar, ClinicalTrials.gov, and ICTRP (WHO) were systematically searched for randomized controlled trials (RCTs) comparing cellular immunity in CRC patients of any stage between minimally invasive and open surgical resections. A random effects-weighted inverse variance meta-analysis was performed for cell counts of natural killer (NK) cells, white blood cells (WBCs), lymphocytes, CD4+ T cells, and the CD4+/CD8+ ratio. The RoB2 tool was used to assess the risk of bias. The meta-analysis was prospectively registered in PROSPERO (CRD42021264324). A total of 14 trials including 974 participants were assessed. The LS groups showed more favorable outcomes in eight trials, with lower inflammation and less immunosuppression as indicated by higher innate and adaptive cell counts, higher NK cell activity, and higher HLA-DR expression rates compared to OS, with only one study reporting lower WBCs after OS. The meta-analysis yielded significantly higher NK cell counts at postoperative day (POD)4 (weighted mean difference (WMD) 30.80 cells/µL [19.68; 41.92], p < 0.00001) and POD6-8 (WMD 45.08 cells/µL [35.95; 54.21], p < 0.00001). Although further research is required, LS is possibly associated with less suppression of cellular immunity and lower inflammation, indicating better preservation of cellular immunity.
Collapse
Affiliation(s)
- Annika Bohne
- Fakultät für Medizin, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elena Grundler
- Fakultät für Medizin, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Helge Knüttel
- Universitätsbibliothek Regensburg, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alois Fürst
- Caritas Krankenhaus St. Josef Regensburg, Klinik für Allgemein-, Viszeral-, Thoraxchirurgie und Adipositasmedizin, Landshuter Str. 65, 93053 Regensburg, Germany
| | - Vinzenz Völkel
- Tumorzentrum Regensburg-Zentrum für Qualitätssicherung und Versorgungsforschung der Universität Regensburg, Am BioPark 9, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|
4
|
Quadrini KJ, Patti-Diaz L, Maghsoudlou J, Cuomo J, Hedrick MN, McCloskey TW. A flow cytometric assay for HLA-DR expression on monocytes validated as a biomarker for enrollment in sepsis clinical trials. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:103-114. [PMID: 33432735 DOI: 10.1002/cyto.b.21987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Decreased expression of HLA-DR on monocytes (mHLA-DR) is a reliable indicator of immunosuppression in patients with sepsis and is correlated with increased risk of secondary infection and mortality. A flow cytometry-based laboratory developed test for the measurement of mHLA-DR in whole blood was validated for clinical trial enrollment, which is considered medical decision-making, for patients with severe sepsis or septic shock. METHODS The BD Quantibrite™ anti-HLA-DR/anti-monocyte reagent measures antibodies bound per cell of HLA-DR on CD14+ monocytes. The mHLA-DR assay was planned to support inclusion/exclusion of patients for a clinical trial and was validated according to New York State Department of Health (NYSDOH) requirements for a new non-malignant leukocyte immunophenotyping assay. RESULTS Normal, healthy donor and sepsis patient samples were stable up to 72 h post-collection in Cyto-Chex BCT phlebotomy tubes. Pre-determined acceptance criteria were met for precision parameters (average %CV ≤ 20%) and global laboratory-to-laboratory comparisons (average %Δ ≤ 20%). The approaches taken to evaluate and report accuracy, analytical specificity and sensitivity, reportable range, reference interval, and the proposed multi-level quality control were accepted by NYSDOH. CONCLUSIONS In this study, the validation strategy necessary when the intended use of assay results changes from exploratory to medical decision making (patient enrollment), which successfully resulted in regulatory approval, is described.
Collapse
Affiliation(s)
- Karen J Quadrini
- Department of Research and Development, ICON Laboratory Services, Farmingdale, New York, USA
| | - Lisa Patti-Diaz
- Clinical Flow Cytometry, Department of Translational Pathology and Biomarker Technologies, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Jasmin Maghsoudlou
- Department of Research and Development, ICON Laboratory Services, Farmingdale, New York, USA
| | - Joanne Cuomo
- Cellular Immunology, ICON Laboratory Services, Farmingdale, New York, USA
| | - Michael Nathan Hedrick
- Clinical Flow Cytometry, Department of Translational Pathology and Biomarker Technologies, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA
| | - Thomas W McCloskey
- Department of Research and Development, ICON Laboratory Services, Farmingdale, New York, USA
| |
Collapse
|
5
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
6
|
Leijte GP, Rimmelé T, Kox M, Bruse N, Monard C, Gossez M, Monneret G, Pickkers P, Venet F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:110. [PMID: 32192532 PMCID: PMC7082984 DOI: 10.1186/s13054-020-2830-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Background Decreased monocytic (m)HLA-DR expression is the most studied biomarker of sepsis-induced immunosuppression. To date, little is known about the relationship between sepsis characteristics, such as the site of infection, causative pathogen, or severity of disease, and mHLA-DR expression kinetics. Methods We evaluated mHLA-DR expression kinetics in 241 septic shock patients with different primary sites of infection and pathogens. Furthermore, we used unsupervised clustering analysis to identify mHLA-DR trajectories and evaluated their association with outcome parameters. Results No differences in mHLA-DR expression kinetics were found between groups of patients with different sites of infection (abdominal vs. respiratory, p = 0.13; abdominal vs. urinary tract, p = 0.53) and between pathogen categories (Gram-positive vs. Gram-negative, p = 0.54; Gram-positive vs. negative cultures, p = 0.84). The mHLA-DR expression kinetics differed between survivors and non-survivors (p < 0.001), with an increase over time in survivors only. Furthermore, we identified three mHLA-DR trajectories (‘early improvers’, ‘delayed or non-improvers’ and ‘decliners’). The probability for adverse outcome (secondary infection or death) was higher in the delayed or non-improvers and decliners vs. the early improvers (delayed or non-improvers log-rank p = 0.03, adjusted hazard ratio 2.0 [95% CI 1.0–4.0], p = 0.057 and decliners log-rank p = 0.01, adjusted hazard ratio 2.8 [95% CI 1.1–7.1], p = 0.03). Conclusion Sites of primary infection or causative pathogens are not associated with mHLA-DR expression kinetics in septic shock patients. However, patients showing delayed or no improvement in or a declining mHLA-DR expression have a higher risk for adverse outcome compared with patients exhibiting a swift increase in mHLA-DR expression. Our study signifies that changes in mHLA-DR expression over time, and not absolute values or static measurements, are of clinical importance in septic shock patients.
Collapse
Affiliation(s)
- Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Rimmelé
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niklas Bruse
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Céline Monard
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Morgane Gossez
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fabienne Venet
- Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux, Edouard Herriot Hospital, 5 place d'Arsonval, 69437, Lyon Cedex 03, France. .,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.
| |
Collapse
|