1
|
Mercader-Ruiz J, Beitia M, Delgado D, Sánchez P, Porras B, Gimeno I, González S, Benito-Lopez F, Basabe-Desmonts L, Sánchez M. Current Challenges in the Development of Platelet-Rich Plasma-Based Therapies. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6444120. [PMID: 39157212 PMCID: PMC11329313 DOI: 10.1155/2024/6444120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 08/20/2024]
Abstract
Nowadays, biological therapies are booming and more of these formulations are coming to the market. Platelet-rich plasma, or PRP, is one of the most widely used biological therapies due to its ease of obtention and autologous character. Most of the techniques to obtain PRP are focusing on new processes and methods of optimization. However, not enough consideration is being given to modify the molecular components of PRP to generate more effective formulations with the aim of improving PRP treatments. Therefore, this review covers different novel PRP-obtaining methods that attempt to modify the molecular composition of the plasma.
Collapse
Affiliation(s)
- Jon Mercader-Ruiz
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Begoña Porras
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Irene Gimeno
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Sergio González
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHUAnalytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) GroupAnalytical Chemistry DepartmentUniversity of the Basque Country UPV/EHU 48940, Leioa, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHUBIOMICs Microfluidics GroupLascaray Research CenterUniversity of the Basque Country UPV/EHU 01006, Vitoria-Gasteiz, Spain
- Basque Foundation of ScienceIKERBASQUE 48009, Bilbao, Spain
| | - Mikel Sánchez
- Advance Biological Therapy UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
- Arthroscopic Surgery UnitHospital Vithas Vitoria 01008, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Samal S, Barik D, Shyamal S, Jena S, Panda AC, Dash M. Synergistic Interaction between Polysaccharide-Based Extracellular Matrix and Mineralized Osteoblast-Derived EVs Promotes Bone Regeneration via miRNA-mRNA Regulatory Axis. Biomacromolecules 2024; 25:4139-4155. [PMID: 38924768 DOI: 10.1021/acs.biomac.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently. The small RNA sequencing of EVs revealed that miR-204-5p, miR-221-3p, and miR-148a-3p are among the highly upregulated miRNAs that have an inhibitory effect on the function of mRNAs, Sox11, Timp3, and Ccna2 in host cells, which is probably responsible for enhancing the activity of osteoblastic genes. To enhance the bioavailability of EVs, they are encapsulated in a chitosan-collagen composite hydrogel that serves as a bioresorbable extracellular matrix (ECM). The EVs-integrated scaffold (DM-EVs + Scaffold) enhances bone regeneration in critical-sized calvarial bone defects in rats within 8 weeks of implantation by providing the ECM cues. The shelf life of DM-EVs + Scaffold indicates that the bioactivity of EVs and their cargo in the polymer matrix remains intact for up to 30 days. Integrating mineralized cell-derived EVs into an ECM represents a bioresorbable matrix with a cell-free method for promoting new bone formation through the miRNA-mRNA regulatory axis.
Collapse
Affiliation(s)
- Sasmita Samal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Debyashreeta Barik
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Sharmishtha Shyamal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- ICMR-National Institute for Reproduction Biology and Child Health, Mumbai 400012, India
| | - Sarita Jena
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Amaresh C Panda
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Mamoni Dash
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| |
Collapse
|
3
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Sun Y, Sheng R, Cao Z, Liu C, Li J, Zhang P, Du Y, Mo Q, Yao Q, Chen J, Zhang W. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. SCIENCE ADVANCES 2024; 10:eadm7164. [PMID: 38657071 PMCID: PMC11042749 DOI: 10.1126/sciadv.adm7164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.
Collapse
Affiliation(s)
- Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yan Du
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| |
Collapse
|
5
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
6
|
Wilson JE, Today BA, Salazar M, Kuo J, Ransom JT, Lightner AL, Chen G, Wong A. Safety of bone marrow derived mesenchymal stem cell extracellular vesicle injection for lumbar facet joint pain. Regen Med 2024; 19:19-26. [PMID: 38327218 DOI: 10.2217/rme-2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Aim: A 3-month pilot study to evaluate the safety of injecting a bone marrow-derived mesenchymal stem cell extracellular vesicle advanced investigational product (IP) into the lumbar facet joint space as a treatment for chronic low back pain. Methods: 20 healthy adults were treated with IP injections (0.5 ml/joint) and evaluated by three functional assessments 1, 3, 7, 14, 30, 60 and 90 days later. Results: No adverse effects or complications occurred across the 3-month follow-up. There were no reports of worsening pain. After 3 months group average scores improved significantly (p < 0.0001) in the Severity Index (65.04%), Interference Index (72.09%) and Oswestry Disability Index (58.43%) assessments. Conclusion: IP injections were safe and associated with significant functional improvements.
Collapse
Affiliation(s)
- James E Wilson
- Interventional Pain Specialists, 28604 Ravine Circle, Covert, MI 49043, USA
| | - Bobbie A Today
- Interventional Pain Specialists, 28604 Ravine Circle, Covert, MI 49043, USA
| | - Maria Salazar
- Interventional Pain Specialists, 28604 Ravine Circle, Covert, MI 49043, USA
| | | | - John T Ransom
- Direct Biologics, 5301 Southwest Parkway, Building 1, Suite 415, Austin, TX 78735, USA
| | - Amy L Lightner
- Direct Biologics, 5301 Southwest Parkway, Building 1, Suite 415, Austin, TX 78735, USA
| | - Grace Chen
- Hudson Medical Group, 160 7th Ave S, NY 10014, USA
| | - Anita Wong
- Hudson Medical Group, 160 7th Ave S, NY 10014, USA
| |
Collapse
|
7
|
Jhunjhunwala A, Kim J, Kubelick KP, Ethier CR, Emelianov SY. In Vivo Photoacoustic Monitoring of Stem Cell Location and Apoptosis with Caspase-3-Responsive Nanosensors. ACS NANO 2023; 17:17931-17945. [PMID: 37703202 PMCID: PMC10540261 DOI: 10.1021/acsnano.3c04161] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Stem cell therapy has immense potential in a variety of regenerative medicine applications. However, clinical stem cell therapy is severely limited by challenges in assessing the location and functional status of implanted cells in vivo. Thus, there is a great need for longitudinal, noninvasive stem cell monitoring. Here we introduce a multidisciplinary approach combining nanosensor-augmented stem cell labeling with ultrasound guided photoacoustic (US/PA) imaging for the spatial tracking and functional assessment of transplanted stem cell fate. Specifically, our nanosensor incorporates a peptide sequence that is selectively cleaved by caspase-3, the primary effector enzyme in mammalian cell apoptosis; this cleavage event causes labeled cells to show enhanced optical absorption in the first near-infrared (NIR) window. Optimization of labeling protocols and spectral characterization of the nanosensor in vitro showed a 2.4-fold increase in PA signal from labeled cells during apoptosis while simultaneously permitting cell localization. We then successfully tracked the location and apoptotic status of mesenchymal stem cells in a mouse hindlimb ischemia model for 2 weeks in vivo, demonstrating a 4.8-fold increase in PA signal and spectral slope changes in the first NIR window under proapoptotic (ischemic) conditions. We conclude that our nanosensor allows longitudinal, noninvasive, and nonionizing monitoring of stem cell location and apoptosis, which is a significant improvement over current end-point monitoring methods such as biopsies and histological staining of excised tissue.
Collapse
Affiliation(s)
- Anamik Jhunjhunwala
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Jinhwan Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey P. Kubelick
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - C. Ross Ethier
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Stanislav Y. Emelianov
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Sedik AS, Kawana KY, Koura AS, Mehanna RA. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet Disord 2023; 24:205. [PMID: 36932362 PMCID: PMC10022145 DOI: 10.1186/s12891-023-06276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glucocorticoids are used for the treatment of autoimmune disorders; however, they can elicit several side effects such as osteoporosis. Several approaches can be made to treat glucocorticoid-induced osteoporosis, including the use of stem cells. However, the therapeutic effect of mesenchymal stem cells depends on its released factors, including extracellular vesicles. Extracellular vesicles have been recognized as important mediators of intercellular communication as they participate in many physiological processes. The present study was designed to investigate the effect of bone marrow mesenchymal stem cells derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. METHODS Thirty adult albino male rats were divided into 3 groups: control group (CG), glucocorticoid-induced osteoporosis (GOG) and extracellular vesicles treated group (ExTG). Rats in the GOG and ExTG groups were injected with methylprednisolone acetate (40 mg/kg) intramuscularly in the quadriceps muscle 3 times per week for three weeks in the early morning. Afterwards, the rats in GOG group received a single vehicle injection (PBS) while each rat in the ExTG group received a single injection of extracellular vesicles (400 μg/kg suspended in 0.2 ml PBS) in the tail vein. Rats were euthanized 1 month after injection. Mandibles were dissected and the molar segments were prepared for histological preparation, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). RESULTS Histology and scanning electron microscopyof bone tissue showed alveolar bone loss and bone resorption in the GOG group. while in the ExTG group, alveolar bone demostrated normal bone architecture. EDX showed that calcium percentage in GOG group was lower than ExTG group,which showed no statistically significant difference from the control group. CONCLUSIONS Extracellular vesicles may be a promising treatment modality in the treatment of bone diseases and in bone regeneration. However, further research is needed before stating that extracellular vesicles s can be used to treat bone disorders especially when translating to humans.
Collapse
Affiliation(s)
- Aya S. Sedik
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Khadiga Y. Kawana
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Azza S. Koura
- grid.7155.60000 0001 2260 6941Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Radwa A. Mehanna
- grid.7155.60000 0001 2260 6941Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- grid.7155.60000 0001 2260 6941Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Liu M, Wang Y, Gao G, Zhao WX, Fu Q. Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside. Curr Stem Cell Res Ther 2023; 18:17-26. [PMID: 35249506 DOI: 10.2174/1574888x17666220304213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guo Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
10
|
Renikunta H, Chakrabarti R, Duddu S, Bhattacharya A, Chakravorty N, Shukla PC. Stem Cells and Therapies in Cardiac Regeneration. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
11
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
12
|
Carvajal-Oliveros A, Uriostegui-Arcos M, Zurita M, Melchy-Perez EI, Narváez-Padilla V, Reynaud E. The BE (2)-M17 cell line has a better dopaminergic phenotype than the traditionally used for Parkinson´s research SH-SY5Y, which is mostly serotonergic. IBRO Neurosci Rep 2022; 13:543-551. [DOI: 10.1016/j.ibneur.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/19/2022] [Indexed: 11/21/2022] Open
|
13
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
14
|
Hu X, Liu Z, Zhou X, Jin Q, Xu W, Zhai X, Fu Q, Qian H. Small extracellular vesicles derived from mesenchymal stem cell facilitate functional recovery in spinal cord injury by activating neural stem cells via the ERK1/2 pathway. Front Cell Neurosci 2022; 16:954597. [PMID: 36106012 PMCID: PMC9464810 DOI: 10.3389/fncel.2022.954597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) causes severe neurological dysfunction leading to a devastating disease of the central nervous system that is associated with high rates of disability and mortality. Small extracellular vesicles (sEVs) derived from human umbilical cord mesenchymal stem cells (hucMSC-sEVs) have been explored as a promising strategy for treating SCI. In this study, we investigated the therapeutic effects of the intralesional administration of hucMSC-sEVs after SCI and determined the potential mechanisms of successful repair by hucMSC-sEVs. In vivo, we established the rat model of SCI. The Basso, Beattie, Bresnahan (BBB) scores showed that hucMSC-sEVs dramatically promoted the recovery of spinal cord function. The results of the hematoxylin–eosin (HE) staining, Enzyme-Linked Immunosorbent Assay (ELISA), and immunohistochemistry showed that hucMSC-sEVs inhibited inflammation and the activation of glia, and promoted neurogenesis. Furthermore, we studied the effect of hucMSC-sEVs on neural stem cells(NSCs) in vitro. We found that hucMSC-sEVs did not improve the migration ability of NSCs, but promoted NSCs to proliferate and differentiate via the ERK1/2 signaling pathway. Collectively, these findings suggested that hucMSC-sEVs promoted the functional recovery of SCI by activating neural stem cells via the ERK1/2 pathway and may provide a new perspective and therapeutic strategy for the clinical application of hucMSC-sEVs in SCI treatment.
Collapse
Affiliation(s)
- Xinyuan Hu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinru Zhou
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Jin
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
- Xiao Zhai,
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qiang Fu,
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
- *Correspondence: Hui Qian,
| |
Collapse
|
15
|
Tran ON, Wang H, Li S, Malakhov A, Sun Y, Abdul Azees PA, Gonzalez AO, Cao B, Marinkovic M, Singh BB, Dean DD, Yeh CK, Chen XD. Organ-specific extracellular matrix directs trans-differentiation of mesenchymal stem cells and formation of salivary gland-like organoids in vivo. Stem Cell Res Ther 2022; 13:306. [PMID: 35841112 PMCID: PMC9284714 DOI: 10.1186/s13287-022-02993-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Current treatments for salivary gland (SG) hypofunction are palliative and do not address the underlying cause or progression of the disease. SG-derived stem cells have the potential to treat SG hypofunction, but their isolation is challenging, especially when the tissue has been damaged by disease or irradiation for head and neck cancer. In the current study, we test the hypothesis that multipotent bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model are capable of trans-differentiating to the SG epithelial cell lineage when induced by a native SG-specific extracellular matrix (SG-ECM) and thus may be a viable substitute for repairing damaged SGs. METHODS Rat BM-MSCs were treated with homogenates of decellularized rat SG-ECM for one hour in cell suspension and then cultured in tissue culture plates for 7 days in growth media. By day 7, the cultures contained cell aggregates and a cell monolayer. The cell aggregates were hand-selected under a dissecting microscope, transferred to a new tissue culture dish, and cultured for an additional 7 days in epithelial cell differentiation media. Cell aggregates and cells isolated from the monolayer were evaluated for expression of SG progenitor and epithelial cell specific markers, cell morphology and ultrastructure, and ability to form SG-like organoids in vivo. RESULTS The results showed that this approach was very effective and guided the trans-differentiation of a subpopulation of CD133-positive BM-MSCs to the SG epithelial cell lineage. These cells expressed amylase, tight junction proteins (Cldn 3 and 10), and markers for SG acinar (Aqp5 and Mist 1) and ductal (Krt 14) cells at both the transcript and protein levels, produced intracellular secretory granules which were morphologically identical to those found in submandibular gland, and formed SG-like organoids when implanted in the renal capsule in vivo. CONCLUSIONS The results of this study suggest the feasibility of using autologous BM-MSCs as an abundant source of stem cells for treating SG hypofunction and restoring the production of saliva in these patients.
Collapse
Affiliation(s)
- Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Shengxian Li
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200126, People's Republic of China
| | - Andrey Malakhov
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Parveez A Abdul Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Brian Cao
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA.
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA.
| |
Collapse
|
16
|
Dahal S, Dayal S, Androjna C, Peterson J, Ramamurthi A. Adult Mesenchymal Stem Cells and Derivatives in Improved Elastin Homeostasis in a Rat Model of Abdominal Aortic Aneurysms. Stem Cells Transl Med 2022; 11:850-860. [PMID: 35758561 PMCID: PMC9397656 DOI: 10.1093/stcltm/szac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are localized rupture-prone expansions of the aorta with limited reversibility that develop due to proteolysis of the elastic matrix. Natural regenerative repair of an elastic matrix is difficult due to the intrinsically poor elastogenicity of adult vascular smooth muscle cells (VSMCs). This justifies the need to provide external, pro-elastin regenerative- and anti-proteolytic stimuli to VSMCs in the AAA wall towards reinstating matrix structure in the aorta wall. Introducing alternative phenotypes of highly elastogenic and contractile cells into the AAA wall capable of providing such cues, proffers attractive prospects for AAA treatment. In this regard, we have previously demonstrated the superior elastogenicity of bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs (cBM-SMCs) and their ability to provide pro-elastogenic and anti-proteolytic stimuli to aneurysmal SMCs in vitro. However, the major issues associated with cell therapy, such as their natural ability to home into the AAA tissue, their in vivo biodistribution and retention in the AAA wall, and possible paracrine effects on AAA tissue repair processes in the event of localization in remote tissues remain uncertain. Therefore, in this study we focused on assessing the fate, safety, and AAA reparative effects of BM-MSC-derived cBM-SMCs in vivo. Our results indicate that the cBM-SMCs (a) possess natural homing abilities similar to the undifferentiated BM-MSCs, (b) exhibit higher retention upon localization in the aneurysmal aorta than BM-MSCs, (c) downregulate the expression of several inflammatory and pro-apoptotic cytokines that are upregulated in the AAA wall contributing to accelerated elastic matrix breakdown and suppression of elastic fiber neo-assembly, repair, and crosslinking, and (d) improve elastic matrix content and structure in the AAA wall toward slowing the growth of AAAs. Our study provides initial evidence of the in vivo elastic matrix reparative benefits of cBM-SMCs and their utility in cell therapy to reverse the pathophysiology of AAAs.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| | - Simran Dayal
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| | - Charlie Androjna
- Cleveland Clinic, Lerner Research Institute, Department of Biomedical Engineering, Cleveland, OH, USA
| | - John Peterson
- Cleveland Clinic, Lerner Research Institute, Department of Research Core Administration, Cleveland, OH, USA
| | - Anand Ramamurthi
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| |
Collapse
|
17
|
Cho YD, Kim KH, Lee YM, Ku Y, Seol YJ. Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation. J Periodontal Implant Sci 2022; 52:437-454. [PMID: 36468465 PMCID: PMC9807848 DOI: 10.5051/jpis.2103760188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023] Open
Abstract
Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Kyoung-Hwa Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
18
|
Kang J, Guo Y. Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes Promote Neurological Function Recovery in a Rat Spinal Cord Injury Model. Neurochem Res 2022; 47:1532-1540. [PMID: 35132478 DOI: 10.1007/s11064-022-03545-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often leads to personal and social-economic consequences with limited therapeutic options. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSC) have been explored as a promising alternative to cell therapies. In the current study, we explored the mechanism of hUC-MSC derived exosome's ameliorative effect on the spinal cord injury by combining data from in vivo contusion SCI model and in vitro cell viability of PC12 cell line stimulated with lipopolysaccharide. Intravenous administration of hUC-MSC derived exosomes dramatically improved motor function of Sprague-Dawley rats after SCI, with reduced apoptosis demonstrated by increased expression of B-cell lymphoma 2 (BCL2), decreased BCL2 associated X, apoptosis regulator (Bax), and reduced cleaved caspase 9. Conversely, exosome treatment reduced the transcription levels of astrocytes marker GFAP and microglia marker IBA1, suggesting a reduced inflammatory state from SCI injury. Furthermore, exosome treatment in vitro increased the cell viability of PC12 cells. Exosome application activated the Wnt/β-Catenin signaling in the spinal cord. Our study demonstrated that hUC-MSC derived exosomes could improve motor function through anti-apoptosis and anti-inflammatory effects. BCL2/Bax and Wnt/β-catenin signaling pathways were involved in the SCI process and could potentially mediate the protective effect of hUC-MSC derived exosomes.
Collapse
Affiliation(s)
- Jian Kang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Yan Guo
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
19
|
Kim HJ, Kim G, Lee J, Lee Y, Kim JH. Secretome of Stem Cells: Roles of Extracellular Vesicles in Diseases, Stemness, Differentiation, and Reprogramming. Tissue Eng Regen Med 2022; 19:19-33. [PMID: 34817808 PMCID: PMC8782975 DOI: 10.1007/s13770-021-00406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that stem cells or stem cell-derived cells may contribute to tissue repair, not only by replacing lost tissue but also by delivering complex sets of secretory molecules, called secretomes, into host injured tissues. In recent years, extracellular vesicles (EVs) have gained much attention for their diverse and important roles in a wide range of pathophysiological processes. EVs are released from most types of cells and mediates cell-cell communication by activating receptors on target cells or by being taken up by recipient cells. EVs, including microvesicles and exosomes, encapsulate and carry proteins, nucleic acids, and lipids in the lumen and on the cell surface. Thus, EV-mediated intercellular communication has been extensively studied across various biological processes. While a number of investigations has been conducted in different tissues and body fluids, the field lacks a systematic review on stem cell-derived EVs, especially regarding their roles in stemness and differentiation. Here, we provide an overview of the pathophysiological roles of EVs and summarize recent findings focusing on EVs released from various types of stem cells. We also highlight emerging evidence for the potential implication of EVs in self-renewal, differentiation, and reprograming and discuss the benefits and limitations in translational approaches.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea.
| |
Collapse
|
20
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
21
|
Zhao X, Li Q, Guo Z, Li Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 2021; 12:583. [PMID: 34809719 PMCID: PMC8607654 DOI: 10.1186/s13287-021-02650-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapy is widely recognized as a promising strategy for exerting therapeutic effects after injury in degenerative diseases. However, limitations such as low cell retention and survival rates after transplantation exist in clinical applications. In recent years, emerging biomaterials that provide a supportable cellular microenvironment for transplanted cells have optimized the therapeutic efficacy of stem cells in injured tissues or organs. Advances in the engineered microenvironment are revolutionizing our understanding of stem cell-based therapies by co-transplanting with synthetic and tissue-derived biomaterials, which offer a scaffold for stem cells and propose an unprecedented opportunity to further employ significant influences in tissue repair and regeneration.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
22
|
Chen S, Huang H, Liu Y, Wang C, Chen X, Chang Y, Li Y, Guo Z, Han Z, Han ZC, Zhao Q, Chen XM, Li Z. Renal subcapsular delivery of PGE 2 promotes kidney repair by activating endogenous Sox9 + stem cells. iScience 2021; 24:103243. [PMID: 34746706 PMCID: PMC8554536 DOI: 10.1016/j.isci.2021.103243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Prostaglandin E2 (PGE2) has recently been recognized to play a role in immune regulation and tissue regeneration. However, the short half-life of PGE2 limits its clinical application. Improving the delivery of PGE2 specifically to the target organ with a prolonged release method is highly desirable. Taking advantage of the adequate space and proximity of the renal parenchyma, renal subcapsular delivery allows minimally invasive and effective delivery to the entire kidney. Here, we report that by covalently cross-linking it to a collagen matrix, PGE2 exhibits an adequate long-term presence in the kidney with extensive intraparenchymal penetration through renal subcapsular delivery and significantly improves kidney function. Sox9 cell lineage tracing with intravital microscopy revealed that PGE2 could activate the endogenous renal progenitor Sox9+ cells through the Yap signaling pathway. Our results highlight the prospects of utilizing renal subcapsular-based drug delivery and facilitate new applications of PGE2-releasing matrices for regenerative therapy. PGE2 exhibits an adequate long-term release by being covalently cross-linked to collagen The renal subcapsular space serves as a reservoir for the delivery of PGE2 Sox9+ renal progenitor cells can be lineage traced intravitally by microscopy PGE2 activates the endogenous renal progenitor Sox9+ cells through the YAP pathway
Collapse
Affiliation(s)
- Shang Chen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Haoyan Huang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Yue Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoniao Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yuhao Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, Jiangxi, China.,Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center for Cell Products, AmCellGene Co., Ltd., Tianjin China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100039, China
| |
Collapse
|
23
|
Ahamad N, Sun Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CRD, Natarajan M, Singh BB. Differential activation of Ca 2+ influx channels modulate stem cell potency, their proliferation/viability and tissue regeneration. NPJ Regen Med 2021; 6:67. [PMID: 34671058 PMCID: PMC8528841 DOI: 10.1038/s41536-021-00180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Caroline R D Xavier Paul Ezhilan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Ahamad N, Singh BB. Calcium channels and their role in regenerative medicine. World J Stem Cells 2021; 13:260-280. [PMID: 33959218 PMCID: PMC8080543 DOI: 10.4252/wjsc.v13.i4.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells hold indefinite self-renewable capability that can be differentiated into all desired cell types. Based on their plasticity potential, they are divided into totipotent (morula stage cells), pluripotent (embryonic stem cells), multipotent (hematopoietic stem cells, multipotent adult progenitor stem cells, and mesenchymal stem cells [MSCs]), and unipotent (progenitor cells that differentiate into a single lineage) cells. Though bone marrow is the primary source of multipotent stem cells in adults, other tissues such as adipose tissues, placenta, amniotic fluid, umbilical cord blood, periodontal ligament, and dental pulp also harbor stem cells that can be used for regenerative therapy. In addition, induced pluripotent stem cells also exhibit fundamental properties of self-renewal and differentiation into specialized cells, and thus could be another source for regenerative medicine. Several diseases including neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, virus infection (also coronavirus disease 2019) have limited success with conventional medicine, and stem cell transplantation is assumed to be the best therapy to treat these disorders. Importantly, MSCs, are by far the best for regenerative medicine due to their limited immune modulation and adequate tissue repair. Moreover, MSCs have the potential to migrate towards the damaged area, which is regulated by various factors and signaling processes. Recent studies have shown that extracellular calcium (Ca2+) promotes the proliferation of MSCs, and thus can assist in transplantation therapy. Ca2+ signaling is a highly adaptable intracellular signal that contains several components such as cell-surface receptors, Ca2+ channels/pumps/exchangers, Ca2+ buffers, and Ca2+ sensors, which together are essential for the appropriate functioning of stem cells and thus modulate their proliferative and regenerative capacity, which will be discussed in this review.
Collapse
Affiliation(s)
- Nassem Ahamad
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, San Antonio, TX 78257, United States
| |
Collapse
|
25
|
Hu W, Song X, Yu H, Sun J, Wang H, Zhao Y. Clinical Translational Potentials of Stem Cell-Derived Extracellular Vesicles in Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:682145. [PMID: 35095751 PMCID: PMC8789747 DOI: 10.3389/fendo.2021.682145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of insulin caused by the autoimmune destruction of pancreatic islet β cells. Stem cell-based therapies play essential roles in immunomodulation and tissue regeneration, both of which hold great promise for treating many autoimmune dysfunctions. However, their clinical translational potential has been limited by ethical issues and cell transplant rejections. Exosomes are small extracellular vesicles (EVs) released by almost all types of cells, performing a variety of cell functions through the delivery of their molecular contents such as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs exhibit similar functions as their parent cells, which may represent novel therapeutic agents for the treatment of autoimmune diseases including T1D. In this review, we summarize the current research progresses of stem cell-derived EVs for the treatment of T1D.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Hongjun Wang
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Throne Biotechnologies Inc., Paramus, NJ, United States
- *Correspondence: Yong Zhao,
| |
Collapse
|
26
|
Abstract
A potential ability of stem cells (SCs) is to regenerate and repair tissues in the human body by providing great prospects for therapeutic applications in the field of medicine. Currently, SC therapy is used in various conditions like diabetes, neurodegenerative disorders, etc. but faces some limitations like patient biocompatibility and chances of cross-infection. SCs are further modulated with nanoconjugates to overcome such challenges and will offer an advantage in the treatment of COVID-19. This pandemic requires design and development of proper treatment to save the life of human beings. Advancements in SC-based nanoconjugated therapy will open new avenues and create a significant impact in the development of futuristic nanomedicine. It may also emerge as a potential therapy for the management of infection in patients suffering from SARS-CoV-2 and related diseases such as pneumonia and virus-induced lung injuries. Mechanisms of stem cell-based nanoconjugates for inhibition of replication of corona virus. ![]()
Collapse
|
27
|
Sperelakis I, Tsitoura E, Koutoulaki C, Mastrodimou S, Tosounidis TH, Spandidos DA, Antoniou KM, Kontakis G. Influence of reaming intramedullary nailing on MSC population after surgical treatment of patients with long bone fracture. Mol Med Rep 2020; 22:2521-2527. [PMID: 32705190 PMCID: PMC7411410 DOI: 10.3892/mmr.2020.11320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022] Open
Abstract
Reamed intramedullary nailing (RIN) is a surgical method of choice for treatment of diaphyseal fractures. This procedure affects the biological environment of bone tissue locally and systemically. This study investigated the influence of RIN on mesenchymal stem cells (MSCs) in patients with long bone fractures. The axis of C-X-C motif chemokine receptor 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) was selected since it is considered as major pathway for MSC homing and migration. Iliac crest bone marrow (IC-BM) samples and blood samples were collected at two different time points. One sample was collected before the RIN (BN) and the other immediately after RIN (AN). BM-MSCs were cultured and RT-qPCR was performed for CXCR4 mRNA levels and ELISA for the SDF-1 sera levels. The experimental study revealed that there was a correlation between the increase of SDF-1 levels in peripheral blood and a decrease in the levels of CXCR4 in MSCs in the IC-BM following RIN. The levels of SDF-1 showed a significant increase in the sera of patients after RIN. In conclusion, the present study is the first providing evidence of the effects of RIN on MSC population via the CXCR4/SDF-1 axis. The levels of serum SDF-1 factor were elevated after RIN while increased levels of SDF-1 in peripheral blood were inversely correlated with the mRNA levels of CXCR4 on BM-MSCs after RIN. Therefore, this study contributes to enlighten the systematic effects of RIN on the population of MSCs at a cellular level.
Collapse
Affiliation(s)
- Ioannis Sperelakis
- Department of Orthopedics and Traumatology, University of Crete School of Medicine, 71003 Heraklion, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, University General Hospital of Heraklion, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Chara Koutoulaki
- Department of Respiratory Medicine, University General Hospital of Heraklion, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Semeli Mastrodimou
- Department of Respiratory Medicine, University General Hospital of Heraklion, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Theodoros H Tosounidis
- Department of Orthopedics and Traumatology, University of Crete School of Medicine, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina M Antoniou
- Department of Respiratory Medicine, University General Hospital of Heraklion, Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Kontakis
- Department of Orthopedics and Traumatology, University of Crete School of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
28
|
The neurological update: therapies for cerebellar ataxias in 2020. J Neurol 2020; 267:1211-1220. [DOI: 10.1007/s00415-020-09717-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
|
29
|
Mosquera-Perez R, Fernández-Olavarria A, Diaz-Sanchez RM, Gutierrez-Perez JL, Serrera-Figallo MÁ, Torres-Lagares D. Stem cells and oral surgery: A systematic review. J Clin Exp Dent 2019; 11:e1181-e1189. [PMID: 31824601 PMCID: PMC6894914 DOI: 10.4317/jced.56571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background Considering the structural loss that occurs after surgical procedures for cystic and tumoral pathology, in periodontitis, as well as the maxillary atrophy that determines the rehabilitation with dental implants, it is imperative to find satisfactory solutions. The opportunity provided by the findings in stem cells is a recent introduction in the field of oral surgery, based on the regenerative potential that these cells possess in order to restore defects at different levels of the oral cavity. The aim of this systematic review is to discover the real applications that stem cells may have in our treatments in the near future. Material and Methods We made a systematic review of the literature on the subject of stem cells to know the publications relating to them in the field of oral surgery since 2000. PRISMA statement was accomplished, as its official flow chart is used. Results This article draws clinical conclusions from basic research and those conducted in the first clinical cases to apply them in a short period of time to our patients in order to achieve excellence in regenerative therapies. Conclusions To summarize, stem cells may be a turning point in tissue regeneration, though the major challenge is to overcome the remaining obstacles before they become a realistic therapeutic alternative. Key words:Stem cells, oral surgery, cell therapy, regeneration.
Collapse
Affiliation(s)
- Regina Mosquera-Perez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Ana Fernández-Olavarria
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Rosa-Maria Diaz-Sanchez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - José-Luis Gutierrez-Perez
- MD, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | | | - Daniel Torres-Lagares
- DDS, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| |
Collapse
|
30
|
Kargozar S, Lotfibakhshaeish N, Ebrahimi-Barough S, Nazari B, Hill RG. Stimulation of Osteogenic Differentiation of Induced Pluripotent Stem Cells (iPSCs) Using Bioactive Glasses: An in vitro Study. Front Bioeng Biotechnol 2019; 7:355. [PMID: 31850324 PMCID: PMC6901961 DOI: 10.3389/fbioe.2019.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Selection and use of an optimal cell source for bone tissue engineering (BTE) remain a challenging issue; the invention of induced pluripotent stem cells (iPSCs) have created new hopes on this regard. At the present study, we attempted to show the usability of iPSCs in combination with bioactive glasses (BGs) for bone regeneration applications. For this aim, iPSCs were cultured and incubated with the strontium and cobalt-containing BGs for different intervals (1, 5, and 7 days). The cell cytotoxicity and attachment were assessed using MTT assay and scanning electron microscopy (SEM), respectively. Moreover, the osteogenic differentiation of iPSCs seeded onto the glasses was evaluated using alkaline phosphatase (ALP) activity assay and real-time PCR. The obtained results clarified that although the cell viability is decreased during a 7 day period, the iPSCs could adhere and expand onto the BGs particles and over-express the osteogenic markers, including osteocalcin, osteonectin, and Runx2. Based on the data, we conclude that iPSCs in a combination of BGs can be considered as a potential candidate for BTE strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Lotfibakhshaeish
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert G. Hill
- Unit of Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Ventre M, Coppola V, Natale CF, Netti PA. Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. J Biomed Mater Res A 2019; 107:2536-2546. [PMID: 31325203 DOI: 10.1002/jbm.a.36759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging, making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here, aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness, whereas stiff ones, in presence of biochemical supplements, promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population, that is, soft aligned matrices ameliorate the spontaneous adipogenic differentiation, whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment, which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.
Collapse
Affiliation(s)
- Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valerio Coppola
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
32
|
Abstract
Stem cell therapy is a promising alternative approach to the treatment of a number of incurable degenerative diseases. However, low cell retention and survival after transplantation limit the therapeutic efficacy of stem cells for clinical translational applications. The utilization of biomaterials has been progressively successful in controlling the fate of transplanted cells by imitating the cellular microenvironment for optimal tissue repair and regeneration. This review mainly focuses on the engineered microenvironments with synthetic biomaterials in modification of stem cell behaviors. Moreover, the possible advancements in translational therapy by using biomaterials with stem cells are prospected and the challenges of the current restriction in clinical applications are highlighted.
Collapse
|
33
|
Salehi-pourmehr H, Rahbarghazi R, Mahmoudi J, Roshangar L, Chapple CR, Hajebrahimi S, Abolhasanpour N, Azghani MR. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sci 2019; 221:20-28. [DOI: 10.1016/j.lfs.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
34
|
Gallo F, Ninotta G, Schenone M, Cortese P, Giberti C. Advances in stem cell therapy for male stress urinary incontinence. Expert Opin Biol Ther 2019; 19:293-300. [PMID: 30709326 DOI: 10.1080/14712598.2019.1578343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Among the several options that have been proposed in recent years for the management of male stress urinary incontinence (SUI), stem cell therapy represents a new frontier in treatment. The aim of this paper is to update the current status of stem cell therapy in animal and human studies for the management of iatrogenic male SUI. AREAS COVERED A literature review was conducted based on MEDLINE/PubMed searches for English articles using a combination of the following keywords: stem cell therapy, urinary incontinence, prostatectomy, regenerative medicine, mesenchymal stem cells. EXPERT OPINION The few studies reported in the literature have demonstrated short-term safety and promising results of stem cell therapy in treating male SUI. However, many aspects need to be clarified before stem cell therapy can be introduced into daily urologic practice. In fact, important issues such as the limitations of these studies in terms of small sample sizes and short follow-ups, the incomplete knowledge of the mechanism of action of stem cells, the technical details regarding the delivery method and the best sources of stem cells, the safety risks regarding genomic or epigenetic changes and potential immune reactions in the longer term need to be identified in more stringent clinical trials.
Collapse
Affiliation(s)
- Fabrizio Gallo
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Gaetano Ninotta
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Maurizio Schenone
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Pierluigi Cortese
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| | - Claudio Giberti
- a Department of Surgery, Division of Urology , San Paolo Hospital , Savona , Italy
| |
Collapse
|
35
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
36
|
Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes (Basel) 2018; 9:genes9040178. [PMID: 29570681 PMCID: PMC5924520 DOI: 10.3390/genes9040178] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Chloe R Austin
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Toby J Phesse
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
37
|
Stem Cell Tracing Through MR Molecular Imaging. Tissue Eng Regen Med 2018; 15:249-261. [PMID: 30603551 DOI: 10.1007/s13770-017-0112-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy opens a new window in medicine to overcome several diseases that remain incurable. It appears such diseases as cardiovascular disorders, brain injury, multiple sclerosis, urinary system diseases, cartilage lesions and diabetes are curable with stem cell transplantation. However, some questions related to stem cell therapy have remained unanswered. Stem cell imaging allows approval of appropriated strategies such as selection of the type and dose of stem cell, and also mode of cell delivery before being tested in clinical trials. MRI as a non-invasive imaging modality provides proper conditions for this aim. So far, different contrast agents such as superparamagnetic or paramagnetic nanoparticles, ultrasmall superparamagnetic nanoparticles, fluorine, gadolinium and some types of reporter genes have been used for imaging of stem cells. The core subject of these studies is to investigate the survival and differentiation of stem cells, contrast agent's toxicity and long term following of transplanted cells. The promising results of in vivo and some clinical trial studies may raise hope for clinical stem cells imaging with MRI.
Collapse
|
38
|
Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomed Pharmacother 2017; 97:38-44. [PMID: 29080456 DOI: 10.1016/j.biopha.2017.10.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023] Open
Abstract
The research in stem cells gives a proper information about basic mechanisms of human development and differentiation. The use of stem cells in new medicinal therapies includes treatment of different conditions such as spinal cord injury, diabetes mellitus, Parkinsonism, and cardiac disorders. These cells exhibit two unique properties: self-renewal and differentiation. The major stem cells been used for approximately about 10-14 years for cellular therapy are mesenchymal stem cells. Mesenchymal stem cells can individualize into many lineage, i.e. into both mesenchymal and non-mesenchymal lineage, such as into osteoblasts, chondrocytes, myocytes, adipocytes, neurons, etc. This review focuses on the history, types of stem cells and their targets and mechanisms of mesenchymal stem cells. Mesenchymal stem cells are the significant futuristic carrier for treating diseases associated not only with regeneration but also immunomodulation.
Collapse
|
39
|
Evans A, Ratcliffe E. Rising influence of synthetic biology in regenerative medicine. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Angharad Evans
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| | - Elizabeth Ratcliffe
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| |
Collapse
|
40
|
Bukovsky A. Involvement of blood mononuclear cells in the infertility, age-associated diseases and cancer treatment. World J Stem Cells 2016; 8:399-427. [PMID: 28074124 PMCID: PMC5183987 DOI: 10.4252/wjsc.v8.i12.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/19/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Blood mononuclear cells consist of T cells and monocyte derived cells. Beside immunity, the blood mononuclear cells belong to the complex tissue control system (TCS), where they exhibit morphostatic function by stimulating proliferation of tissue stem cells followed by cellular differentiation, that is stopped after attaining the proper functional stage, which differs among various tissue types. Therefore, the term immune and morphostatic system (IMS) should be implied. The TCS-mediated morphostasis also consists of vascular pericytes controlled by autonomic innervation, which is regulating the quantity of distinct tissues in vivo. Lack of proper differentiation of tissue cells by TCS causes either tissue underdevelopment, e.g., muscular dystrophy, or degenerative functional failures, e.g., type 1 diabetes and age-associated diseases. With the gradual IMS regression after 35 years of age the gonadal infertility develops, followed by a growing incidence of age-associated diseases and cancers. Without restoring an altered TCS function in a degenerative disease, the implantation of tissue-specific stem cells alone by regenerative medicine can not be successful. Transfused young blood could temporarily restore fertility to enable parenthood. The young blood could also temporarily alleviate aging diseases, and this can be extended by substances inducing IMS regeneration, like the honey bee propolis. The local and/or systemic use of honey bee propolis stopped hair and teeth loss, regressed varicose veins, improved altered hearing, and lowered high blood pressure and sugar levels. Complete regression of stage IV ovarian cancer with liver metastases after a simple elaborated immunotherapy is also reported.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Antonin Bukovsky, Laboratory of Reproductive Biology BIOCEV, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
41
|
Human Cord Blood-Derived CD133 +/C-Kit +/Lin - Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells. Stem Cells Int 2016; 2016:7162160. [PMID: 28074098 PMCID: PMC5203918 DOI: 10.1155/2016/7162160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs.
Collapse
|
42
|
Karimi M, Bahrami S, Mirshekari H, Basri SMM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. LAB ON A CHIP 2016; 16:2551-71. [PMID: 27296463 PMCID: PMC4935609 DOI: 10.1039/c6lc00489j] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. and Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran. and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Amir R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. and Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Chhabra H, Kumbhar J, Rajwade J, Jadhav S, Paknikar K, Jadhav S, Bellare JR. Three-dimensional scaffold of gelatin–poly(methyl vinyl ether-alt-maleic anhydride) for regenerative medicine: Proliferation and differentiation of mesenchymal stem cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515617491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell-based tissue engineering offers great promise to regenerative therapy, but so far it has been restricted due to insufficient number of cells obtained from donors and the lack of efficient ways of delivering them to target sites. This study shows, for the first time, the ability of a composite scaffold of gelatin and poly(methyl vinyl ether- alt-maleic anhydride) (GP-2) as a niche for expansion and multilineage differentiation ability of human umbilical cord–derived mesenchymal stem cells. First, the in vivo biocompatibility of scaffolds was checked by subcutaneous implantation of scaffolds in male Wistar rats for up to 45 days. Hematological parameters and histology of skin near implanted region rule out the probability of any adverse effects due to the scaffolds. The isolated human umbilical cord–derived mesenchymal stem cells were seeded on to pre-optimized scaffolds and induced to differentiate into osteogenic and adipogenic lineages by culturing in respective induction media. The human umbilical cord–derived mesenchymal stem cells were found to be viable and proliferated well on scaffolds when assessed with live/dead and PicoGreen assay. The biochemical assays such as alkaline phosphatase activity and triglycerides estimation confirmed the differentiation of cells toward particular lineages when cultured on scaffolds with appropriate inductive media. The study exhibited the proficiency of scaffold GP-2 for mesenchymal stem cells’ adherence, proliferation, and differentiation and also showed its engraftment efficiency. Taken together, our study establishes the in vivo biocompatibility of composite scaffold and, importantly, indicates its potential for stem cell–based therapy.
Collapse
Affiliation(s)
- Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyoti Kumbhar
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Jyutika Rajwade
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Sachin Jadhav
- Animal Sciences Division, Agharkar Research Institute, Pune, India
| | - Kishore Paknikar
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh R Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
44
|
Chung E. Stem-cell-based therapy in the field of urology: a review of stem cell basic science, clinical applications and future directions in the treatment of various sexual and urinary conditions. Expert Opin Biol Ther 2015; 15:1623-32. [DOI: 10.1517/14712598.2015.1075504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Ghita A, Pascut FC, Sottile V, Denning C, Notingher I. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation. EPJ TECHNIQUES AND INSTRUMENTATION 2015; 2:6. [PMID: 26161299 PMCID: PMC4486413 DOI: 10.1140/epjti/s40485-015-0016-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 05/27/2023]
Abstract
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.
Collapse
Affiliation(s)
- Adrian Ghita
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Flavius C Pascut
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Virginie Sottile
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Chris Denning
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Ioan Notingher
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
46
|
Immune suppressive effects of tonsil-derived mesenchymal stem cells on mouse bone-marrow-derived dendritic cells. Stem Cells Int 2015; 2015:106540. [PMID: 25784940 PMCID: PMC4345276 DOI: 10.1155/2015/106540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/09/2015] [Accepted: 01/24/2015] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs) on the differentiation, maturation, and function of dendritic cells (DCs). We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM-) derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+ T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF), RANTES, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.
Collapse
|
47
|
Sun B. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins. Proteomics 2014; 15:1152-63. [DOI: 10.1002/pmic.201400300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Bingyun Sun
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University; Burnaby British Columbia Canada
| |
Collapse
|
48
|
Kim JH, Lee HJ, Song YS. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J Urol 2014; 55:228-38. [PMID: 24741410 PMCID: PMC3988432 DOI: 10.4111/kju.2014.55.4.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering and stem cell transplantation are two important options that may help overcome limitations in the current treatment strategy for bladder dysfunction. Stem cell therapy holds great promise for treating pathophysiology, as well as for urological tissue engineering and regeneration. To date, stem cell therapy in urology has mainly focused on oncology and erectile dysfunction. The therapeutic potency of stem cells (SCs) was originally thought to derive from their ability to differentiate into various cell types including smooth muscle. The main mechanisms of SCs in reconstituting or restoring bladder function are migration, differentiation, and paracrine effects. Nowadays, paracrine effects of stem cells are thought to be more prominent because of their stimulating effects on stem cells and adjacent cells. Studies of stem cell therapy for bladder dysfunction have been limited to experimental models and have been less focused on tissue engineering for bladder regeneration. Bladder outlet obstruction is a representative model. Adipose-derived stem cells, bone marrow stem cells (BMSCs), and skeletal muscle-derived stem cells or muscle precursor cells are used for transplantation to treat bladder dysfunction. The aim of this study is to review stem cell therapy and updated tissue regeneration as treatments for bladder dysfunction and to provide the current status of stem cell therapy and tissue engineering for bladder dysfunction including its mechanisms and limitations.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Bajek A, Olkowska J, Gurtowska N, Kloskowski T, Walentowicz-Sadlecka M, Sadlecki P, Grabiec M, Drewa T. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine. Expert Opin Biol Ther 2014; 14:831-9. [PMID: 24655038 DOI: 10.1517/14712598.2014.898749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The first application of tissue engineering was based on the use of differentiated cells from the adult organism, which was associated with an invasiveness and high risk of diseased cells' transplantation. Over the years, the range of available cell populations for tissue engineering has widened. AREAS COVERED We review the comprehensive information concerning the characteristic features of amniotic-fluid-derived stem cells (AFSCs). We also review the potential applications of these cells in clinical practice. EXPERT OPINION AFSCs hold promise for the future treatment of many incurable diseases. However, such cell-based therapies have some limitations, and there are questions relating to the use of stem cells, which should be carefully analyzed before translation of these cells into clinical practice.
Collapse
Affiliation(s)
- Anna Bajek
- Nicolaus Copernicus University, Department of Tissue Engineering , Karlowicza 24, 85-092 Bydgoszcz , Poland +48 525853737 ; +48 525853742 ;
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hua S, Chung H, Sidhu K. Human therapeutic cloning, pitfalls and lack luster because of rapid developments in induced pluripotent stem cell technology. ASIAN BIOMED 2014. [DOI: 10.5372/1905-7415.0801.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Therapeutic cloning is the combination of somatic cell nuclear transfer (SCNT) and embryonic stem cell (ES) techniques to create specific ES cells that match those of a patient. Because ES cells derived by nuclear transfer (SCNT ES cells) are genetically identical to the donor, it will not generate rejection by the host’s immune system and thus therapeutically may be more acceptable. Induced pluripotent stem cells (iPS) are a type of pluripotent stem cell artificially derived from an adult somatic cell by inducing a forced expression of a set of specific pluripotent genes. In the past few years, rapid progress in reprogramming and iPS technology has been made, and it seems to shadow any progress made in SCNT programs.
Objective: This review compares the application perspective of SCNT with that of iPS in regenerative medicine.
Methods:We conducted a literature search using the MEDLINE (PubMed), Wiley InterScience, Springer, EBSCO, and Annual Reviews databases using the keywords “iPS”, “ES”, “SCNT” “induced pluripotent stem cells”, “embryonic stem cells”, “therapeutic cloning”, “regenerative medicine”, and “somatic cell nuclear transfer”. Only articles published in English were included in this review.
Results: These two methods both have advantages and disadvantages. Nevertheless, by using SCNT to generate patient-specific cell lines, it eliminates complications by avoiding the use of viral vectors during iPS generation. Success in in vitro matured eggs from aged women and even differentiation of oocytes from germ stem cells will further enhance the application of SCNT in regenerative medicine.
Conclusion: Human SCNT may be an appropriate mean of generating patient stem cell lines for clinical therapy in the near future.
Collapse
Affiliation(s)
- Song Hua
- Stem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, New South Wales 2052, Australia China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Henry Chung
- Stem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, New South Wales 2052, Australia
| | - Kuldip Sidhu
- Stem Cell Lab Chair, Stem Cell Biology, Clinical Sciences Building, Prince of Wales Hospital, NSW 2052, Australia
| |
Collapse
|