1
|
Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv 2021; 18:625-634. [PMID: 33270470 DOI: 10.1080/17425247.2021.1860015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The treatment of hard tissue defects, especially those of bone and cartilage, induced by infections or tumors remains challenging. Traditional methods, including debridement with systematic chemotherapy, have shortcomings owing to their inability to eliminate infections and high systematic toxicity. AREA COVERED This review comprehensively summarizes and discusses the current applications of 3D-printed porous tantalum (3D-P-p-Ta), a novel drug delivery strategy, in drug delivery systems to repair hard tissue defects, as well as the limitations of existing data and potential future research directions. EXPERT OPINION Drug delivery systems have advanced medical treatments, with the advantages of high local drug concentration, long drug-release period, and minimal systematic toxicity. Due to its excellent biocompatibility, ideal mechanical property, and anti-corrosion ability, porous tantalum is one of the most preferable loading scaffolds. 3D printing allows for freedom of design and facilitates the production of regular porous implants with high repeatability. There are several reports on the application of 3D-P-p-Ta in drug delivery systems for the management of infection- or tumor-associated bone defects, yet, to the best of our knowledge, no reviews have summarized the current research progress.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Department of Orthopedics, No.6 Affiliated Hospital Xinjiang Medical University, Urumqi Xinjiang, China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, China
| |
Collapse
|
2
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Schagemann JC, Rudert N, Taylor ME, Sim S, Quenneville E, Garon M, Klinger M, Buschmann MD, Mittelstaedt H. Bilayer Implants: Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model. Cartilage 2016; 7:346-60. [PMID: 27688843 PMCID: PMC5029563 DOI: 10.1177/1947603515623992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. METHODS Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. RESULTS Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. CONCLUSION There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair.
Collapse
Affiliation(s)
- Jan C. Schagemann
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany,Mayo Clinic, Orthopedic Surgery, Rochester, MN, USA,Jan C. Schagemann, University Medical Center Schleswig Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Ratzeburger Allee 160, 23538 Lübeck, Germany. Email
| | - Nicola Rudert
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany
| | | | - Sotcheadt Sim
- Biomedical and Chemical Engineering, Polytechnique Montreal, Montreal, Canada,Biomomentum Inc., Laval, Quebec, Canada
| | | | | | | | | | - Hagen Mittelstaedt
- University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany
| |
Collapse
|
4
|
Mrosek EH, Chung HW, Fitzsimmons JS, O'Driscoll SW, Reinholz GG, Schagemann JC. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint Res 2016; 5:403-11. [PMID: 27660334 PMCID: PMC5037966 DOI: 10.1302/2046-3758.59.bjr-2016-0070.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023] Open
Abstract
Objectives We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G. Reinholz, J. C. Schagemann. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint J 2016;5:403–411. DOI: 10.1302/2046-3758.59.BJR-2016-0070.R1.
Collapse
Affiliation(s)
- E H Mrosek
- Specialist "Biologic Joint Reconstruction", Department for Trauma-, Hand- and Reconstructive Surgery, Ortenau Klinikum Offenburg, Ebertplatz 12, 77654 Offenburg, Germany and Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - H-W Chung
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - J S Fitzsimmons
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - S W O'Driscoll
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA @mayo.edu
| | - G G Reinholz
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - J C Schagemann
- Cartilage Specialist, Clinic for Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany and Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Jamil K, Chua KH, Joudi S, Ng SL, Yahaya NH. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. J Orthop Surg Res 2015; 10:27. [PMID: 25889942 PMCID: PMC4327955 DOI: 10.1186/s13018-015-0166-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/14/2015] [Indexed: 12/01/2022] Open
Abstract
Objective Functional tissue engineering has emerged as a potential means for treatment of cartilage defect. Development of a stable cartilage composite is considered to be a good option. The aim of the study was to observe whether the incorporation of cultured chondrocytes on porous tantalum utilizing fibrin as a cell carrier would promote cartilage tissue formation. Methods Rabbit articular chondrocytes were cultured and seeded onto tantalum with fibrin as temporary matrix in a composite, which was divided into three groups. The first group was kept in vitro while a total of 12 constructs were implanted into the dorsum of mice for the second and third groups. The implanted tissues were harvested after 4 weeks (second group) and after 8 weeks (third group). Specific characteristic of cartilage growth were studied by histological and biochemical assessment, immunohistochemistry, and quantitative PCR analysis. Results Histological and biochemical evaluation of the formed cartilage using hematoxylin and eosin and Alcian blue staining showed lacunae chondrocytes embedded in the proteoglycan rich matrix. Dimethylmethylene blue assay demonstrated high glycosaminoglycans content in the removed tissue following 8 weeks of implantation. Immunohistochemistry results showed the composites after implantation expressed high collagen type II. Quantitative PCR results confirmed a significant increase in cartilage associated genes expression (collagen type II, AggC, Sox 9) after implantation. Conclusion Tantalum scaffold with fibrin as cell carrier promotes chondrocyte proliferation and cartilaginous tissue formation. Producing hyaline cartilage within a stable construct of tantalum and fibrin has a potential for treatment of cartilage defect.
Collapse
Affiliation(s)
- Kamal Jamil
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Kien-Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Samad Joudi
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Sook-Luan Ng
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Nor Hamdan Yahaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
|
7
|
Kanazawa S, Fujihara Y, Sakamoto T, Asawa Y, Komura M, Nagata S, Takato T, Hoshi K. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel. J Tissue Eng Regen Med 2011; 7:1-9. [PMID: 21916014 DOI: 10.1002/term.458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/11/2011] [Indexed: 11/06/2022]
Abstract
To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements.
Collapse
Affiliation(s)
- Sanshiro Kanazawa
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tarng YW, Casper ME, Fitzsimmons JS, Stone JJ, Bekkers J, An KN, Su FC, O'Driscoll SW, Reinholz GG. Directional fluid flow enhances in vitro periosteal tissue growth and chondrogenesis on poly-epsilon-caprolactone scaffolds. J Biomed Mater Res A 2010; 95:156-63. [PMID: 20540101 DOI: 10.1002/jbm.a.32830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to investigate the effect of directional fluid flow on periosteal chondrogenesis. Periosteal explants were harvested from 2-month-old rabbits and sutured onto poly-epsilon-caprolactone (PCL) scaffolds with the cambium layer facing away from the scaffolds. The periosteum/PCL composites were cultured in suspension in spinner flask bioreactors and exposed to various fluid flow velocities: 0, 20, 60, and 150 rpm for 4 h each day for 6 weeks. The application of fluid flow significantly increased percent cartilage yield in periosteal explants from 17% in the static controls to 65-75% under fluid flow (there was no significant difference between 20, 60, or 150 rpm). The size of the neocartilage was also significantly greater in explants exposed to fluid flow compared with static culture. The development of zonal organization within the engineered cartilage was observed predominantly in the tissue exposed to flow conditions. The Young's modulus of the engineered cartilage exposed to 60 rpm was significantly greater than the samples exposed to 150 and 20 rpm. These results demonstrate that application of directional fluid flow to periosteal explants secured onto PCL scaffolds enhances cell proliferation, chondrogenic differentiation, and cell organization and alters the biomechanical properties of the engineered cartilage.
Collapse
Affiliation(s)
- Yih-Wen Tarng
- Cartilage and Connective Tissue Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Melton JTK, Wilson AJ, Chapman-Sheath P, Cossey AJ. TruFit CB bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices 2010; 7:333-41. [PMID: 20420556 DOI: 10.1586/erd.10.15] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The TruFit CB osteochondral scaffold plug is a commercially available and licensed scaffold implant for the treatment of chondral and osteochondral defects of the knee. A number of surgical techniques have been described that are designed to achieve neocartilaginous tissue cover of a chondral defect, but many result in fibrocartilage tissue, not type II collagen hyaline cartilage. This fibrocartilage layer can fail with high shear forces in the knee joint, and lead to ongoing articular surface irregularity and subsequent secondary arthritic change. Recent research and clinical interest has focused on employing tissue-engineering techniques utilizing scaffolds in an attempt to obtain cartilage repair tissue that is histologically and biomechanically superior. The TruFit CB implant is one such device. This article describes the techniques of attempted chondral repair and the problems that can be experienced. Current concepts in chondral scaffold design are discussed, and the surgical technique and early experiences with the TruFit CB implant are presented.
Collapse
|
10
|
Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits. Osteoarthritis Cartilage 2010; 18:1183-91. [PMID: 20633683 PMCID: PMC2930762 DOI: 10.1016/j.joca.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 06/09/2010] [Accepted: 06/17/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the efficacy of in situ transforming growth factor-beta1 (TGF-beta1)-pretreated periosteum to untreated periosteum for regeneration of osteochondral tissue in rabbits. METHODS In the pretreatment group, 12 month-old New Zealand white rabbits received subperiosteal injections of 200 ng of TGF-beta1 percutaneously in the medial side of the proximal tibia, 7 days prior to surgery. Control rabbits received no treatment prior surgery. Osteochondral transverse defects measuring 5mm proximal to distal and spanning the entire width of the patellar groove were created and repaired with untreated or TGF-beta1-pretreated periosteal grafts. Post-operatively the rabbits resumed normal cage activity for 6 weeks. RESULTS Complete filling of the defects with regenerated tissue was observed in both the TGF-beta1-pretreated and control groups with reformation of the original contours of the patellar groove. The total histological score (modified O'Driscoll) in the TGF-beta1-pretreated group, 20 (95% Confidence Interval (CI), 19-21), was significantly higher (P=0.0001) than the control group, 18 (16-19). The most notable improvements were in structural integrity and subchondral bone regeneration. No significant differences in glycosaminoglycan or type II collagen content, or equilibrium modulus were found between the surgical groups. The cambium of the periosteum regenerated at the graft harvest site was significantly thicker (P=0.0065) in the TGF-beta1-pretreated rabbits, 121 microm (94-149), compared to controls, 74 microm (52-96), after 6 weeks. CONCLUSIONS This study demonstrates that in situ pretreatment of periosteum with TGF-beta1 improves osteochondral tissue regeneration at 6-weeks post-op compared to untreated periosteum in 12 month-old rabbits.
Collapse
|
11
|
Casper ME, Fitzsimmons JS, Stone JJ, Meza AO, Huang Y, Ruesink TJ, O'Driscoll SW, Reinholz GG. Tissue engineering of cartilage using poly-epsilon-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells. Osteoarthritis Cartilage 2010; 18:981-91. [PMID: 20434575 PMCID: PMC2900423 DOI: 10.1016/j.joca.2010.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the potential of periosteal cells to infiltrate poly-epsilon-caprolactone (PCL) nanofiber scaffolds in vivo and subsequently produce cartilage in vitro. DESIGN PCL nanofiber scaffolds, with or without chitosan-coating were implanted under periosteum in 6-month-old rabbits. Transforming growth factor-beta1 (TGF-beta1) or vehicle was injected into each implant site. After 1, 3, 5 or 7 days, scaffolds were removed, separated from the periosteum, and the scaffolds and periosteum were cultured separately for 6 weeks under chondrogenic conditions. Sulfated glycosaminoglycan (GAG), type II collagen, DNA content, cartilage yield, and calcium deposition were then analyzed. RESULTS Cell infiltration was observed in all scaffolds. Cartilage formation in the uncoated scaffolds increased with duration of implantation (maximum at 7 days). Cells in the uncoated scaffolds implanted for 7 days produced significantly higher levels of both GAG [560 (95% confidence interval (CI), 107-1013) vs 228 (95% CI, 177-278) microg GAG/microg DNA] and cartilage yield [9% (95% CI, 3-14%) vs 0.02% (95% CI, 0-0.22%)] compared to chitosan-coated scaffolds (P=0.006 or less). There was no significant difference in GAG content or cartilage yield between the TGF-beta1-injected and vehicle-injected scaffolds. However, significantly more mineral deposition was detected in TGF-beta1-injected scaffolds compared to vehicle-injected scaffolds (P<0.0001). Cartilage yield from the periosteum, moreover, was significantly increased by subperiosteal TGF-beta1 injections (P<0.001). However, this response was reduced when chitosan-coated scaffolds were implanted. CONCLUSIONS This study demonstrates that it is possible to seed PCL nanofiber scaffolds with periosteal cells in vivo and subsequently produce engineered cartilage in vitro.
Collapse
Affiliation(s)
- M E Casper
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bal BS, Rahaman MN, Jayabalan P, Kuroki K, Cockrell MK, Yao JQ, Cook JL. In vivo outcomes of tissue-engineered osteochondral grafts. J Biomed Mater Res B Appl Biomater 2010; 93:164-74. [PMID: 20091911 DOI: 10.1002/jbm.b.31571] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue-engineered osteochondral grafts have been synthesized from a variety of materials, with some success at repairing chondral defects in animal models. We hypothesized that in tissue-engineered osteochondral grafts synthesized by bonding mesenchymal stem cell-loaded hydrogels to a porous material, the choice of the porous scaffold would affect graft healing to host bone, and the quality of cell restoration at the hyaline cartilage surface. Bone marrow-derived allogeneic mesenchymal stem cells were suspended in hydrogels that were attached to cylinders of porous tantalum metal, allograft bone, or a bioactive glass. The tissue-engineered osteochondral grafts, thus created were implanted into experimental defects in rabbit knees. Subchondral bone restoration, defect fill, bone ingrowth-implant integration, and articular tissue quality were compared between the three subchondral materials at 6 and 12 weeks. Bioactive glass and porous tantalum were superior to bone allograft in integrating to adjacent host bone, regenerating hyaline-like tissue at the graft surface, and expressing type II collagen in the articular cartilage.
Collapse
Affiliation(s)
- B Sonny Bal
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Gonzalez C, Auw Yang KG, Schwab JH, Fitzsimmons JS, Reinholz MM, Resch ZT, Bale LK, Clemens VR, Conover CA, O'Driscoll SW, Reinholz GG. Transforming growth factor-beta1 modulates insulin-like growth factor binding protein-4 expression and proteolysis in cultured periosteal explants. Growth Horm IGF Res 2010; 20:81-86. [PMID: 19656700 PMCID: PMC2844918 DOI: 10.1016/j.ghir.2009.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Periosteum is involved in bone growth and fracture healing and has been used as a cell source and tissue graft for tissue engineering and orthopedic reconstruction including joint resurfacing. Periosteum can be induced by transforming growth factor beta (TGF-beta) or insulin-like growth factor-I (IGF-I) alone or in combination to form cartilage. However, little is known about the interaction between IGF and TGF-beta signaling during periosteal chondrogenesis. The purpose of this study was to determine the effect of TGF-beta1 on IGF binding protein-4 (IGFBP-4) and the IGFBP-4 protease pregnancy-associated plasma protein-A (PAPP-A) expression in cultured periosteal explants. DESIGN Periosteal explants from rabbits were cultured with or without TGF-beta1. IGFBP-4 and PAPP-A mRNA levels were determined by real-time quantitative PCR. Conditioned medium was analyzed for IGFBP-4 and PAPP-A protein levels and IGFBP-4 protease activity. RESULTS TGF-beta1-treated explants contained lower IGFBP-4 mRNA levels throughout the culture period with a maximum reduction of 70% on day 5 of culture. Lower levels of IGFBP-4 protein were also detected in the conditioned medium from TGF-beta1-treated explants. PAPP-A mRNA levels were increased 1.6-fold, PAPP-A protein levels were increased threefold, and IGFBP-4 protease activity was increased 8.5-fold between 7 and 10days of culture (the onset of cartilage formation in this model) in conditioned medium from TGF-beta1-treated explants. CONCLUSIONS This study demonstrates that TGF-beta1 modulates the expression of IGFBP-4 and PAPP-A in cultured periosteal explants.
Collapse
Affiliation(s)
- Carlos Gonzalez
- Cartilage and Connective Tissue Research Laboratory, Rochester, MN
| | - Kiem G. Auw Yang
- Cartilage and Connective Tissue Research Laboratory, Rochester, MN
| | - Joseph H. Schwab
- Cartilage and Connective Tissue Research Laboratory, Rochester, MN
| | | | - Monica M. Reinholz
- Department of Laboratory Medicine and Experimental Pathology, Rochester, MN
| | - Zachary T. Resch
- Department of Endocrinology Mayo Clinic College of Medicine, Rochester, MN
| | - Laurie K. Bale
- Department of Endocrinology Mayo Clinic College of Medicine, Rochester, MN
| | | | - Cheryl A. Conover
- Department of Endocrinology Mayo Clinic College of Medicine, Rochester, MN
| | | | | |
Collapse
|
14
|
Oshima Y, Harwood FL, Coutts RD, Kubo T, Amiel D. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model. Tissue Eng Part C Methods 2010; 15:595-604. [PMID: 19231922 DOI: 10.1089/ten.tec.2008.0487] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To achieve osteochondral regeneration utilizing transplantation of cartilage-lineage cells and adequate scaffolds, it is essential to characterize the behavior of transplanted cells in the repair process. The objectives of this study were to elucidate the survival of mesenchymal cells (MCs). In a polylactic acid (PLA) scaffold and assess the possibility of MC/PLA constructs for osteochondral repair. DESIGN Bone marrow from mature male rabbits was cultured for 2 weeks, and fibroblast-like MCs, which contain mesenchymal stem cells (MSCs), were obtained. A cell/scaffold construct was prepared with one million MCs and a biodegradable PLA core using a rotator device. One week after culturing, the construct was transplanted into an osteochondral defect in the medial femoral condyle of female rabbits and the healing process examined histologically. To examine the survivability of transplanted MCs, the male-derived sex-determining region Y (SRY) gene was assessed as a marker of MCs in the defect by polymerase chain reaction (PCR). RESULTS In the groups of defects without any treatment, and the transplantation of PLA without cells, the defects were not repaired with hyaline cartilage. The cartilaginous matrix by safranin O staining and type II collagen by immunohistochemical staining were recognized, however the PLA matrix was still present in the defects at 24 weeks after transplantation of the construct. During the time passage, transplanted MCs numbers decreased from 7.8 x 105 at 1 week, to 3.5 x 105 at 4 weeks, and to 3.8 x 104 at 12 weeks. Transplanted MCs were not detectable at 24 weeks. CONCLUSIONS MCs contribute to the osteochondral repair expressing the cartilaginous matrix, however the number of MCs were decreasing with time (i.e. 24 weeks). These results could be essential for achieving cartilage regeneration by cell transplantation strategies with growth factors and/or gene therapy.
Collapse
Affiliation(s)
- Yasushi Oshima
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, CA 92093-0630, USA
| | | | | | | | | |
Collapse
|
15
|
Mrosek EH, Schagemann JC, Chung HW, Fitzsimmons JS, Yaszemski MJ, Mardones RM, O'Driscoll SW, Reinholz GG. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J Orthop Res 2010; 28:141-8. [PMID: 19743507 DOI: 10.1002/jor.20983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Currently, various techniques are in use for the repair of osteochondral defects, none of them being truly satisfactory and they are often two step procedures. Comorbidity due to cancellous bone harvest from the iliac crest further complicates the procedure. Our previous in vitro studies suggest that porous tantalum (TM) or poly-epsilon-caprolactone scaffolds (PCL) in combination with periosteal grafts could be used for osteochondral defect repair. In this in vivo study, cylindrical osteochondral defects were created on the medial and lateral condyles of 10 rabbits and filled with TM/periosteum or PCL/periosteum biosynthetic composites (n = 8 each). The regenerated osteochondral tissue was then analyzed histologically, and evaluated in an independent and blinded manner by five different observers using a 30-point histological score. The overall histological score for PCL/periosteum was significantly better than for TM/periosteum. However, most of the regenerates were well integrated with the surrounding bone (PCL/periosteum, n = 6.4; TM/periosteum, n = 7) along with partial restoration of the tidemark (PCL/periosteum, n = 4.4; TM/periosteum, n = 5.6). A cover of hyaline-like morphology was found after PCL/periosteum treatment (n = 4.8), yet the cartilage yields were inconsistent. In conclusion, the applied TM and PCL scaffolds promoted excellent subchondral bone regeneration. Neo-cartilage formation from periosteum supported by a scaffold was inconsistent. This is the first study to show in vivo results of both PCL and TM scaffolds for a novel approach to osteochondral defect repair.
Collapse
Affiliation(s)
- Eike H Mrosek
- Cartilage and Connective Tissue Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Bone tissue engineering is an emerging interdisciplinary field in Science, combining expertise in medicine, material science and biomechanics. Hard tissue engineering research is focused mainly in two areas, osteo and dental clinical applications. There is a lot of exciting research being performed worldwide in developing novel scaffolds for tissue engineering. Although, nowadays the majority of the research effort is in the development of scaffolds for non-load bearing applications, primarily using soft natural or synthetic polymers or natural scaffolds for soft tissue engineering; metallic scaffolds aimed for hard tissue engineering have been also the subject of in vitro and in vivo research and industrial development. In this article, descriptions of the different manufacturing technologies available to fabricate metallic scaffolds and a compilation of the reported biocompatibility of the currently developed metallic scaffolds have been performed. Finally, we highlight the positive aspects and the remaining problems that will drive future research in metallic constructs aimed for the reconstruction and repair of bone.
Collapse
Affiliation(s)
- Kelly Alvarez
- Center for Geo-Environmental Science, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan; E-Mail:
| | - Hideo Nakajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel. +81-6-6879-8435; Fax: +81-6-6879-8439
| |
Collapse
|
17
|
Reinholz G, Fitzsimmons J, Casper M, Ruesink T, Chung H, Schagemann J, O’Driscoll S. Rejuvenation of periosteal chondrogenesis using local growth factor injection. Osteoarthritis Cartilage 2009; 17:723-34. [PMID: 19064326 PMCID: PMC4677792 DOI: 10.1016/j.joca.2008.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/28/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the potential for rejuvenation of aged periosteum by local injection of transforming growth factor-beta1 (TGF-beta1) and insulin-like growth factor-1 (IGF-1) alone or in combination to induce cambium cell proliferation and enhance in vitro periosteal cartilage formation. METHODS A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of TGF-beta1 and/or IGF-1 percutaneously. After 1, 3, 5, or 7 days, the rabbits were sacrificed and cambium cellularity or in vitro cartilage forming capacity was determined. RESULTS A significant increase in cambium cellularity and thickness, and in vitro cartilage formation was observed after injection of TGF-beta1 alone or in combination with IGF-1. In 12 month-old rabbits, mean cambium cellularity increased 5-fold from 49 to 237 cells/mm and in vitro cartilage production increased 12-fold from 0.8 to 9.7 mg 7 days after TGF-beta1 (200 ng) injection compared to vehicle controls (P<0.0001). A correlation was observed between cambium cellularity and in vitro cartilage production (R2=0.98). An added benefit of IGF-1 plus TGF-beta1 on in vitro cartilage production compared to TGF-beta1 alone was observed in the 2 year-old rabbits. IGF-1 alone generally had no effect on either cambium cellularity or in vitro cartilage production in any of the age groups. CONCLUSIONS These results clearly demonstrate that it is possible to increase cambium cellularity and in vitro cartilage production in aged rabbit periosteum, to levels comparable to younger rabbits, using local injection of TGF-beta1 alone or in combination with IGF-1, thereby rejuvenating aged periosteum.
Collapse
|
18
|
Lee DK. Ankle arthroplasty alternatives with allograft and external fixation: preliminary clinical outcome. J Foot Ankle Surg 2008; 47:447-52. [PMID: 18725126 DOI: 10.1053/j.jfas.2008.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Indexed: 02/03/2023]
Abstract
UNLABELLED Tibiotalar joint reconstruction for the treatment of osteoarthritic and post-traumatic arthritic joint remains controversial and unsatisfactory. While the current literature recommends joint arthrodesis as a gold standard, current developments in allograft technology may aid in the repair of articular damage; avoid any metallic implant wear, failure, and revision; and preserve normal musculoskeletal biomechanics. The purpose of this retrospective study was to report the early clinical outcomes of ankle arthroplasty with allograft and with the application of a monolateral external fixation in the treatment of ankle arthritis. Eighteen patients (18 ankles, n = 18) with end-stage ankle arthritis, underwent surgical intervention. The mean preoperative AOFAS score was 32.0 +/- 1.1 (30-33) while the postop was 87.33 +/- 7.6 (81-97) (P = .000). There were no complications associated with the allograft material. There were also no complications with the external fixator. The early clinical outcome results provided an optimistic view of this procedure as another alternative treatment for the arthritic ankle, with subjective patient improvement and satisfaction, as well as a statistically significant and functionally increased range of motion and joint space and objective improvements. Allograft implantation with external fixation for the arthritic tibiotalar joint provided encouraging preliminary results and patient satisfaction mirroring current outcomes from shoulder and animal studies. LEVEL OF CLINICAL EVIDENCE 4.
Collapse
Affiliation(s)
- Daniel K Lee
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA 92103-8894, USA.
| |
Collapse
|
19
|
Lima EG, Grace Chao PH, Ateshian GA, Bal BS, Cook JL, Vunjak-Novakovic G, Hung CT. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs. Biomaterials 2008; 29:4292-9. [PMID: 18718655 DOI: 10.1016/j.biomaterials.2008.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been shown to yield engineered cartilaginous tissue with native Young's modulus (E(Y)) and glycosaminoglycan (GAG) content. By day 42 in culture the incorporation of a bony base significantly reduced these properties (E(Y)=87+/-12 kPa, GAG=1.9+/-0.8%ww) compared to the gel-alone group (E(Y)=642+/-97 kPa, GAG=4.6+/-1.4%ww). Similarly, the mechanical and biochemical properties of chondrocyte-seeded agarose constructs were inhibited when co-cultured adjacent to bone (unattached), suggesting that soluble factors rather than direct cell-bone interactions mediate the chondro-inhibitory bone effects. Altering the method of bone preparation, including demineralization, or the timing of bone introduction in co-culture did not ameliorate the effects. In contrast, osteochondral constructs with native cartilage properties (E(Y)=730+/-65 kPa, GAG=5.2+/-0.9%ww) were achieved when a porous tantalum metal base material was adopted instead of bone. This work suggests that devitalized bone may not be a suitable substrate for long-term cultivation of osteochondral grafts.
Collapse
Affiliation(s)
- Eric G Lima
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC8904, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006; 27:4671-81. [PMID: 16737737 DOI: 10.1016/j.biomaterials.2006.04.041] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Porous tantalum, a new low modulus metal with a characteristic appearance similar to cancellous bone, is currently available for use in several orthopedic applications (hip and knee arthroplasty, spine surgery, and bone graft substitute). The open-cell structure of repeating dodecahedrons is produced via carbon vapor deposition/infiltration of commercially pure tantalum onto a vitreous carbon scaffolding. This transition metal maintains several interesting biomaterial properties, including: a high volumetric porosity (70-80%), low modulus of elasticity (3MPa), and high frictional characteristics. Tantalum has excellent biocompatibility and is safe to use in vivo as evidenced by its historical and current use in pacemaker electrodes, cranioplasty plates and as radiopaque markers. The bioactivity and biocompatibility of porous tantalum stems from its ability to form a self-passivating surface oxide layer. This surface layer leads to the formation of a bone-like apatite coating in vivo and affords excellent bone and fibrous in-growth properties allowing for rapid and substantial bone and soft tissue attachment. Tantalum-chondrocyte composites have yielded successful early results in vitro and may afford an option for joint resurfacing in the future. The development of porous tantalum is in its early stages of evolution and the following represents a review of its biomaterial properties and applications in orthopedic surgery.
Collapse
Affiliation(s)
- Brett Russell Levine
- Orthopaedics, Rush University Medical Center, 1725 E. Harrison Street, Suite 1063, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|