1
|
Patrawalla NY, Kajave NS, Kishore V. A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels. J Biomed Mater Res A 2023; 111:224-233. [PMID: 36214419 PMCID: PMC9742125 DOI: 10.1002/jbm.a.37452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
Biomimetic scaffolds composed of bioactive ceramic-based materials incorporated within a polymeric framework have shown immense promise for use in bone tissue engineering (BTE) applications. However, studies on direct comparison of the efficacy of different bioceramics on bone bioactivity and osteogenic differentiation are lacking. Herein, we performed an in vitro direct comparison of three different bioceramics-Bioglass 45S5 (BG), Laponite XLG (LAP), and β-Tricalcium Phosphate (TCP)-on the physical properties and bone bioactivity of methacrylated collagen (CMA) hydrogels (10% w/w bioceramic:CMA). In addition, human MSCs (hMSCs) were encapsulated in bioceramic-laden CMA hydrogels and the effect of different bioceramics on osteogenic differentiation of hMSCs was investigated in two different culture medium-osteoconductive (without dexamethasone [DEX]) and osteoinductive (with DEX). Results showed that the stability of CMA hydrogels was maintained upon bioceramic addition. Compression testing revealed that BG incorporation significantly decreased (p < 0.05) the modulus of photochemically crosslinked CMA hydrogels. Incubation of TCP-CMA and LAP-CMA hydrogels in simulated body fluid showed deposition of hydroxycarbonate apatite layer on the surface indicating that these hydrogels may be more bone bioactive than BG-CMA and CMA only hydrogels. Cell cytoskeleton staining results showed greater cell spreading in TCP-CMA hydrogels. Furthermore, TCP incorporation significantly increased alkaline phosphatase activity (ALP; p < 0.05) in hMSCs. Together, these results indicate that TCP has superior osteogenic potential compared with BG and LAP and hence should be considered as a bioceramic of preferred choice for use in the biomimetic design of cell-laden hydrogels for BTE applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
2
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Peña GDL, Gallego L, Redondo LM, Junquera L, Doval JF, Meana Á. Comparative analysis of plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane in critical mandibular bone defects: An experimental study on rats. J Biomater Appl 2021; 36:481-491. [PMID: 33653155 DOI: 10.1177/0885328221999824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Repair of bone deficiencies in the craniofacial skeleton remains a challenging clinical problem. The aim of this study was to evaluate and compare the effects of a plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane implanted into experimental mandibular defects. Bilateral mandibular defects were created in twelve immunodeficient rats. The bone defect was filled with serum scaffold alone in left sides and scaffold combined with human alveolar osteoblast in right side defects. Implanted areas were closed directly in Group 1 (n = 6) and covered by a resorbable polyglycolic-polylactic acid membrane in Group 2 (n = 6). Bone regeneration was determined at 12 weeks as measured by and exhaustive multiplanar computed tomography analysis and histological examination. No significant differences in bone density were observed between defects transplanted with scaffold alone or scaffold seeded with osteoblasts. The use of membrane did not result in a determining factor in the grade of bone regeneration between Groups 1 and 2. Based on these results, it could be concluded that the albumin scaffold alone has osteoinductive capacity but presence of seeded ostogenic cells accelerates defect repair without being significantly influenced by covering the defect with a resorbable membrane.
Collapse
Affiliation(s)
- Gonzalo de la Peña
- Oral and Maxillofacial Surgery Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Lorena Gallego
- Oral and Maxillofacial Surgery Department, Hospital Universitario de Cabueñes, Gijon, Asturias, Spain
| | - Luis M Redondo
- Oral and Maxillofacial Surgery Department, Rio Hortega University Hospital, C/Dulzaina 2, Valladolid, Spain
| | - Luis Junquera
- Oviedo University, Catedrático José Serrano Street s/n, Oviedo, Asturias, Spain
| | - Javier F Doval
- Recaver Dental and Maxillofacial Clinic, Paseo Isabel la Catolica, Valladolid, Spain
| | - Álvaro Meana
- Fernandez Vega Ophthalmologic Institute, Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Gallego L, Junquera L, García-Consuegra L, Martinez A, Meana Á. Regeneration of mandibular osteoradionecrosis with autologous cross-linked serum albumin scaffold. Regen Med 2020; 15:1841-1849. [PMID: 32815773 DOI: 10.2217/rme-2020-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Osteoradionecrosis is one of the most severe complications of radiotherapy administered for head and neck tumors. We present the first two cases of advanced and refractory mandibular osteoradionecrosis treated by application of a novel autologous cross-linked 3D serum matrix. Patients were followed clinically and radiographically up to 24 months. Complete wound healing and intact mucosal cover were achieved in both cases. At 12 months, the radiographic values showed an almost complete regeneration of the bone defect, which continued a favourable progression increased to the maximum by 24 months after surgery. The use of an autologous serum-derived scaffold proved to be a quick, predictable, cost-effective and safe adjunct to the conservative surgical treatment of this pathology.
Collapse
Affiliation(s)
- Lorena Gallego
- Department of Oral & Maxillofacial Surgery. Cabueñes University Hospital, 33394 Gijón, Spain.,Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| | - Luis Junquera
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain.,Department of Oral & Maxillofacial Surgery, Central University Hospital, 33006 Oviedo, Spain
| | - Luis García-Consuegra
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain.,Department of Oral & Maxillofacial Surgery, Central University Hospital, 33006 Oviedo, Spain
| | - Antonio Martinez
- Department of Radiology, Cabueñes University Hospital, 33394 Gijón, Spain
| | - Álvaro Meana
- Community Blood & Tissue Center of Asturias, 33006 Oviedo, Spain.,Ophthalmologic Research Foundation, U714, CIBER Rare Diseases (CIBERER), Oviedo, Spain
| |
Collapse
|
5
|
Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019; 209:10-24. [PMID: 31022557 PMCID: PMC6527863 DOI: 10.1016/j.biomaterials.2019.04.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 01/08/2023]
Abstract
Recent advances in regenerative medicine have confirmed the potential to manufacture viable and effective tissue engineering 3D constructs comprising living cells for tissue repair and augmentation. Cell printing has shown promising potential in cell patterning in a number of studies enabling stem cells to be precisely deposited as a blueprint for tissue regeneration guidance. Such manufacturing techniques, however, face a number of challenges including; (i) post-printing cell damage, (ii) proliferation impairment and, (iii) poor or excessive final cell density deposition. The use of hydrogels offers one approach to address these issues given the ability to tune these biomaterials and subsequent application as vectors capable of delivering cell populations and as extrusion pastes. While stem cell-laden hydrogel 3D constructs have been widely established in vitro, clinical relevance, evidenced by in vivo long-term efficacy and clinical application, remains to be demonstrated. This review explores the central features of cell printing, cell-hydrogel properties and cell-biomaterial interactions together with the current advances and challenges in stem cell printing. A key focus is the translational hurdles to clinical application and how in vivo research can reshape and inform cell printing applications for an ageing population.
Collapse
Affiliation(s)
- G Cidonio
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Engineering Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - M Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
6
|
Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg 2018; 46:222-229. [DOI: 10.1016/j.jcms.2017.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
|
7
|
Shao RX, Quan RF, Wang T, Du WB, Jia GY, Wang D, Lv LB, Xu CY, Wei XC, Wang JF, Yang DS. Effects of a bone graft substitute consisting of porous gradient HA/ZrO 2 and gelatin/chitosan slow-release hydrogel containing BMP-2 and BMSCs on lumbar vertebral defect repair in rhesus monkey. J Tissue Eng Regen Med 2017; 12:e1813-e1825. [PMID: 29055138 DOI: 10.1002/term.2601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 08/05/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023]
Abstract
Dense biomaterial plays an important role in bone replacement. However, it fails to induce bone cell migration into graft material. In the present study, a novel bone graft substitute (BGS) consisting of porous gradient hydroxyapatite/zirconia composite (PGHC) and gelatin/chitosan slow-release hydrogel containing bone morphogenetic protein 2 and bone mesenchymal stem cells was designed and prepared to repair lumbar vertebral defects. The morphological characteristics of the BGS evaluated by a scanning electron microscope showed that it had a three-dimensional network structure with uniformly distributed chitosan microspheres on the surfaces of the graft material and the interior of the pores. Then, BGS (Group A), PGHC (Group B), or autologous bone (Group C) was implanted into lumbar vertebral body defects in a total of 24 healthy rhesus monkeys. After 8 and 16 weeks, anteroposterior and lateral radiographs of the lumbar spine, microcomputed tomography, histomorphometry, biomechanical testing, and biochemical testing for bone matrix markers, including Type I collagen, osteocalcin, osteopontin, basic fibroblast growth factor, alkaline phosphatase, and vascular endothelial growth factor, were performed to examine the reparative efficacy of the BGS and PGHC. The BGS displayed excellent ability to repair the lumbar vertebral defect in rhesus monkeys. Radiography, microcomputed tomography scanning, and histomorphological characterization showed that the newly formed bone volume in the interior of the pores in the BGS was significantly higher than in the PGHC. The results of biomechanical testing indicated that the vertebral body compression strength of the PGHC implant was lower than the other implants. Reverse-transcription polymerase chain reaction and western blot analyses showed that the expression of bone-related proteins in the BGS implant was significantly higher than in the PGHC implant. The BGS displayed reparative effects similar to autologous bone. Therefore, BGS use in vertebral bone defect repair appears promising.
Collapse
Affiliation(s)
- Rong-Xue Shao
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Ren-Fu Quan
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tuo Wang
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wei-Bin Du
- Department of Orthopedics, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Gao-Yong Jia
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Dong Wang
- Department of Orthopedics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Long-Bao Lv
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Cai-Yin Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China
| | - Xi-Cheng Wei
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jin-Fu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Di-Sheng Yang
- Department of Orthopedics, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Abstract
BACKGROUND Adequate biomaterials for tissue engineering bone and replacement of bone in clinical settings are still being developed. Previously, the combination of mesenchymal stem cells in hydrogels and calcium-based biomaterials in both in vitro and in vivo experiments has shown promising results. However, results may be optimized by careful selection of the material combination. METHODS β-Tricalcium phosphate scaffolds were three-dimensionally printed with five different hydrogels: collagen I, gelatin, fibrin glue, alginate, and Pluronic F-127. The scaffolds had eight channels, running throughout the entire scaffold, and macropores. Mesenchymal stem cells (2 × 10) were mixed with each hydrogel, and cell/hydrogel mixes were dispersed onto the corresponding β-tricalcium phosphate/hydrogel scaffold and cultured under dynamic-oscillating conditions for 6 weeks. Specimens were harvested at 1, 2, 4, and 6 weeks and evaluated histologically, radiologically, biomechanically and, at 6 weeks, for expression of bone-specific proteins by reverse-transcriptase polymerase chain reaction. Statistical correlation analysis was performed between radiologic densities in Hounsfield units and biomechanical stiffness. RESULTS Collagen I samples had superior bone formation at 6 weeks as demonstrated by volume computed tomographic scanning, with densities of 300 HU, similar to native bone, and the highest compression values. Bone specificity of new tissue was confirmed histologically and by the expression of alkaline phosphatase, osteonectin, osteopontin, and osteocalcin. The bone density correlated closely with histologic and biomechanical testing results. CONCLUSION Bone formation is supported best by β-tricalcium phosphate/collagen I hydrogel and mesenchymal stem cells in collagen I hydrogel. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
10
|
Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography. Biomaterials 2016; 88:12-24. [PMID: 26928595 DOI: 10.1016/j.biomaterials.2016.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023]
Abstract
Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials.
Collapse
|
11
|
Gallego L, Pérez-Basterrechea M, García-Consuegra L, Álvarez-Viejo M, Megías J, Novoa A, Costilla S, Meana Á, Junquera L. Repair of segmental mandibular bone defects in sheep using bone marrow stromal cells and autologous serum scaffold: a pilot study. J Clin Periodontol 2016; 42:1143-51. [DOI: 10.1111/jcpe.12480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Lorena Gallego
- Department of Oral and Maxillofacial Surgery; Cabueñes Hospital; Gijón Spain
| | | | - Luis García-Consuegra
- Department of Oral and Maxillofacial Surgery; Central University Hospital; Oviedo Spain
| | - María Álvarez-Viejo
- Transplants, Cell Therapy and Regenerative Medicine Unit; Central University Hospital; Oviedo Spain
| | - Joaquim Megías
- Department of Oral and Maxillofacial Surgery; Central University Hospital; Oviedo Spain
| | - Alba Novoa
- Department of Oral and Maxillofacial Surgery; Central University Hospital; Oviedo Spain
| | - Serafín Costilla
- Department of Medicine; University of Oviedo; Oviedo Spain
- Department of Radiology; Central University Hospital; Oviedo Spain
| | - Álvaro Meana
- Transplants, Cell Therapy and Regenerative Medicine Unit; Central University Hospital; Oviedo Spain
- Ophthalmologic Research Foundation; U714; CIBER Rare Diseases (CIBERER); Oviedo Spain
| | - Luis Junquera
- Department of Oral and Maxillofacial Surgery; Central University Hospital; Oviedo Spain
- Department of Surgery; University of Oviedo; Oviedo Spain
| |
Collapse
|
12
|
Short AR, Koralla D, Deshmukh A, Wissel B, Stocker B, Calhoun M, Dean D, Winter JO. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J Mater Chem B 2015; 3:7818-7830. [PMID: 26693013 PMCID: PMC4675359 DOI: 10.1039/c5tb01043h] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.
Collapse
Affiliation(s)
- Aaron R. Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deepthi Koralla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ameya Deshmukh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Wissel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Stocker
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Jessica O. Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Riopel M, Trinder M, Wang R. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:34-44. [PMID: 24947304 DOI: 10.1089/ten.teb.2014.0188] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fibrin is derived from fibrinogen during injury to produce a blood clot and thus promote wound repair. Composed of different domains, including Arg-Gly-Asp amino acid motifs, fibrin is used extensively as a hydrogel and sealant in the clinic. By binding to cell surface receptors like integrins and acting as a supportive 3D scaffold, fibrin has been useful in promoting cell differentiation, proliferation, function, and survival. In particular, fibrin has been able to maintain islet cell architecture, promote beta cell insulin secretion, and islet angiogenesis, as well as inducing a protective effect against cell death. During islet transplantation, fibrin improved neovascularization and islet function. These improvements resulted in reduced number of transplanted islets necessary to reverse diabetes. Therefore, fibrin, as a biocompatible and biodegradable scaffold, should be considered during subcutaneous islet transplantation and beta cell expansion in vitro to ensure maintenance of islet cell function, proliferation, and survival to develop effective cell-based therapies for the treatment of diabetes.
Collapse
Affiliation(s)
- Matthew Riopel
- 1 Children's Health Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
14
|
Li H, Xu Y, Xie H, Li C, Song L, Feng C, Zhang Q, Xie M, Wang Y, Lv X. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A 2014; 20:774-84. [PMID: 24329501 DOI: 10.1089/ten.tea.2013.0122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The limited amount of available epithelial tissue is considered a main cause of the high rate of urethral reconstruction failures. The aim of this study was to investigate whether epithelial-differentiated rabbit adipose-derived stem cells (Epith-rASCs) could play a role of epithelium in vivo functionally and be a potential substitute of urothelium. Substitution urethroplasty was performed to repair an anterior urethral defect in male New Zealand rabbits using Epith-rASCs seeded bladder acellular matrix grafts (BAMGs) after 5-bromo-2'-deoxyuridine (BrdU) labeling, based on the in vitro epithelial induction system we previously described. Urethroplasty with cell-free BAMGs and with undifferentiated rASCs (Und-rASCs) seeded BAMGs were performed as controls. After surgery, a notable amelioration of graft contracture and recovery of urethral continuity were observed in the Epith-rASCs/BAMG group by retrograde urethrograms and macroscopic inspection. Immunofluorescence revealed that the BrdU-labeled Epith-rASCs/Und-rASCs colocalized with cytokeratin 13 or myosin. Consistent with the results of western blotting, at early postimplantation stage, the continuous epithelial layer with local multilayered structure was observed in the Epith-rASCs/BAMG group, whereas no significant growth and local monolayer growth profile of epithelial cells were observed in the BAMG and Und-rASCs/BAMG group, respectively. The results showed that Epith-rASCs could serve as a potential substitute of urothelium for urethral tissue engineering and be available to prevent lumen contracture and subsequent complications including recurrent stricture.
Collapse
Affiliation(s)
- Hongbin Li
- 1 Department of Urology, Sixth People's Hospital, Jiao Tong University of Shanghai , Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Kang BJ, Kim Y, Lee SH, Kim WH, Woo HM, Kweon OK. Collagen I gel promotes homogenous osteogenic differentiation of adipose tissue-derived mesenchymal stem cells in serum-derived albumin scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:1233-43. [PMID: 23713425 DOI: 10.1080/09205063.2012.745717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Repair of bone defects is a difficult clinical problem for reconstructive surgeons. Bone tissue engineering using an appropriate scaffold with cells is a new therapy for the repair of bone defects. The aim of this study was to evaluate the in vitro osteogenesis of canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) cultured in a combination of collagen I gel and a porous serum-derived albumin scaffold. A serum-derived albumin scaffold was prepared with canine serum by cross-linking and freeze-drying procedures. Ad-MSCs were seeded into serum-derived albumin scaffolds with or without collagen I gel, and were exposed to osteogenic differentiation conditions in vitro. After 28 days of in vitro culture, the distribution and osteogenic differentiation of Ad-MSCs cultured in the scaffold were evaluated by scanning electron microscopy, histology, immunohistochemistry, alkaline phosphatase (ALP) activity assay, and calcium colorimetric assay. Ad-MSCs showed more homogeneous distribution and osteogenic differentiation in the scaffold with collagen I gel than without collagen I gel. ALP activity and extracellular matrix mineralization in the construct with type I collagen were significantly higher than in the construct without type I collagen (p < 0.05). In conclusion, the combination of collagen I gel and the serum-derived albumin scaffold enhanced osteogenic differentiation and homogenous distribution of Ad-MSCs.
Collapse
Affiliation(s)
- Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Daehak-dong, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Hale BW, Goodrich LR, Frisbie DD, McIlwraith CW, Kisiday JD. Effect of scaffold dilution on migration of mesenchymal stem cells from fibrin hydrogels. Am J Vet Res 2012; 73:313-8. [PMID: 22280396 DOI: 10.2460/ajvr.73.2.313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of fibrin concentrations on mesenchymal stem cell (MSC) migration out of autologous and commercial fibrin hydrogels. SAMPLE Blood and bone marrow from six 2- to 4-year-old horses. PROCEDURES Autologous fibrinogen was precipitated from plasma and solubilized into a concentrated solution. Mesenchymal stem cells were resuspended in fibrinogen solutions containing 100%, 75%, 50%, and 25% of the fibrinogen precipitate solution. Fibrin hydrogels were created by mixing the fibrinogen solutions with MSCs and thrombin on tissue culture plates. After incubation for 24 hours in cell culture medium, the MSCs that had migrated onto the tissue culture surface and beyond the boundary of the hydrogels were counted. This procedure was repeated with a commercial fibrin sealant. RESULTS Hydrogel-to-surface MSC migration was detected for all fibrin hydrogels. Migration from the 25% autologous hydrogels was 7.3-, 5.2-, and 4.6-fold higher than migration from 100%, 75%, and 50% autologous hydrogels, respectively. The number of migrating cells from 100%, 75%, and 50% autologous hydrogels did not differ significantly. With commercial fibrin sealant, the highest magnitude of migration was from the 25% hydrogels, and it was 26-fold higher than migration from 100% hydrogels. The 75% and 50% hydrogels resulted in migration that was 9.5- and 4.2-fold higher than migration from the 100% hydrogels, respectively. CONCLUSIONS AND CLINICAL RELEVANCE MSC migration from fibrin hydrogels increased with dilution of the fibrinogen component for both autologous and commercial sources. These data supported the feasibility of using diluted fibrin hydrogels for rapid delivery of MSCs to the surface of damaged tissues.
Collapse
Affiliation(s)
- Benjamin W Hale
- Orthopaedic Research Center, Department of Clinical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | |
Collapse
|
18
|
Oh SA, Lee HY, Lee JH, Kim TH, Jang JH, Kim HW, Wall I. Collagen Three-Dimensional Hydrogel Matrix Carrying Basic Fibroblast Growth Factor for the Cultivation of Mesenchymal Stem Cells and Osteogenic Differentiation. Tissue Eng Part A 2012; 18:1087-100. [DOI: 10.1089/ten.tea.2011.0360] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Sun-Ae Oh
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hye-Young Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jae Ho Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Dental Biomaterials, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Ivan Wall
- Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, South Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London, United Kingdom
| |
Collapse
|
19
|
Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 17:373-88. [PMID: 21699433 DOI: 10.1089/ten.teb.2011.0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.
Collapse
Affiliation(s)
- Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gelation of photopolymerized hyaluronic acid grafted with glycidyl methacrylate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJ, Alblas J. Scaffold Porosity and Oxygenation of Printed Hydrogel Constructs Affect Functionality of Embedded Osteogenic Progenitors. Tissue Eng Part A 2011; 17:2473-86. [DOI: 10.1089/ten.tea.2011.0001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Natalja E. Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elske Kuipers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Neuss S, Denecke B, Gan L, Lin Q, Bovi M, Apel C, Wöltje M, Dhanasingh A, Salber J, Knüchel R, Zenke M. Transcriptome analysis of MSC and MSC-derived osteoblasts on Resomer® LT706 and PCL: impact of biomaterial substrate on osteogenic differentiation. PLoS One 2011; 6:e23195. [PMID: 21935359 PMCID: PMC3173366 DOI: 10.1371/journal.pone.0023195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) represent a particularly attractive cell type for bone tissue engineering because of their ex vivo expansion potential and multipotent differentiation capacity. MSC are readily differentiated towards mature osteoblasts with well-established protocols. However, tissue engineering frequently involves three-dimensional scaffolds which (i) allow for cell adhesion in a spatial environment and (ii) meet application-specific criteria, such as stiffness, degradability and biocompatibility. Methodology/Principal Findings In the present study, we analysed two synthetic, long-term degradable polymers for their impact on MSC-based bone tissue engineering: PLLA-co-TMC (Resomer® LT706) and poly(ε-caprolactone) (PCL). Both polymers enhance the osteogenic differentiation compared to tissue culture polystyrene (TCPS) as determined by Alizarin red stainings, scanning electron microscopy, PCR and whole genome expression analysis. Resomer® LT706 and PCL differ in their influence on gene expression, with Resomer® LT706 being more potent in supporting osteogenic differentiation of MSC. The major trigger on the osteogenic fate, however, is from osteogenic induction medium. Conclusion This study demonstrates an enhanced osteogenic differentiation of MSC on Resomer® LT706 and PCL compared to TCPS. MSC cultured on Resomer® LT706 showed higher numbers of genes involved in skeletal development and bone formation. This identifies Resomer® LT706 as particularly attractive scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Sabine Neuss
- Institute of Pathology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Naito H, Dohi Y, Zimmermann WH, Tojo T, Takasawa S, Eschenhagen T, Taniguchi S. The Effect of Mesenchymal Stem Cell Osteoblastic Differentiation on the Mechanical Properties of Engineered Bone-Like Tissue. Tissue Eng Part A 2011; 17:2321-9. [DOI: 10.1089/ten.tea.2011.0099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroshi Naito
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Yoshiko Dohi
- Department of Biochemistry, Nara Medical University School of Medicine, Nara, Japan
| | | | - Takashi Tojo
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Nara, Japan
| | - Thomas Eschenhagen
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shigeki Taniguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
24
|
McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, Loboa EG. In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Eng Part C Methods 2011; 16:1095-105. [PMID: 20192901 DOI: 10.1089/ten.tec.2009.0753] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrospun scaffolds have been studied extensively for their potential use in bone tissue engineering applications. However, inherent issues with the electrospinning approach limit the thickness of these scaffolds and constrain their use for repair of critical-sized bone defects. One method to increase overall scaffold thickness is to bond multiple electrospun scaffolds together with a biocompatible gel. The objective of this study was to determine whether multiple human adipose-derived stem cell (hASC-seeded electrospun, nanofibrous scaffolds could be layered via in situ collagen assembly and whether the addition of laser-ablated micron-sized pores within the electrospun scaffold layers was beneficial to the bonding process. Pores were created by a laser ablation technique. We hypothesized that the addition of micron-sized pores within the electrospun scaffolds would encourage collagen integration between scaffold layers, and promote osteogenic differentiation of hASCs seeded within the layered electrospun scaffolds. To evaluate the benefit of assembled scaffolds with and without engineered pores, hASCs were seeded on individual electrospun scaffolds, hASC-seeded scaffolds were bonded with type I collagen, and the assembled ∼3-mm-thick constructs were cultured for 3 weeks to examine their potential as bone tissue engineering scaffolds. Assembled electrospun scaffolds/collagen gel constructs using electrospun scaffolds with pores resulted in enhanced hASC viability, proliferation, and mineralization of the scaffolds after 3 weeks in vitro compared to constructs using electrospun scaffolds without pores. Scanning electron microscopy and histological examination revealed that the assembled constructs that included laser-ablated electrospun scaffolds were able to maintain a contracted structure and were not delaminated, unlike assembled constructs containing nonablated electrospun scaffolds. This is the first study to show that the introduction of engineered pores in electrospun scaffolds assists with multilayered scaffold integration, resulting in thick constructs potentially suitable for use as scaffolds for bone tissue engineering or repair of critical bone defects.
Collapse
Affiliation(s)
- Seth D McCullen
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, North Carolina 27695-7115, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Chang SCN, Chung HY, Tai CL, Chen PKT, Lin TM, Jeng LB. Repair of large cranial defects by hBMP-2 expressing bone marrow stromal cells: comparison between alginate and collagen type I systems. J Biomed Mater Res A 2010; 94:433-41. [PMID: 20186742 DOI: 10.1002/jbm.a.32685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite a wide range of available sources for bone repair, significant limitations persist. To bioengineer bone, we have previously transferred adenovirus-mediated human BMP-2 gene into autologous bone marrow stromal cells (MSC). We have successfully repaired large, full thickness, cranial defects using this approach. We report now the effectiveness of various hydrogels as the scaffold for this type of bone regeneration, comparing specifically alginate with Type I collagen. Cultured MSC of miniature swine were infected with BMP-2 or beta-gal adenovirus 7 days before implantation. These cells were mixed with alginate, ultrapure alginate, alginate-RGD, or type I collagen to fabricate the MSC/biomaterial constructs. The results of cranial bone regeneration were assessed by gross examination, histology, 3D CT, and biomechanical tests at 6 weeks and 3 months after implantation. We found that the BMP-2 MSC/collagen type I construct, but not the beta-gal control, effectively achieved nearly complete repair of the cranial defects. No bone regeneration was observed with the other hydrogels. Biomechanical testing showed that the new bone strength was very close and only slightly inferior to that of normal cranial bone. Controlling for the integration of stem cells and ex vivo gene transfer, the alginate scaffolds has a significant negative impact on the success of the construct. Our study demonstrates better bone regeneration by collagen type I over alginate. This may have therapeutic implications for tissue engineered bone repair.
Collapse
|
27
|
Moutos FT, Guilak F. Functional properties of cell-seeded three-dimensionally woven poly(epsilon-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng Part A 2010; 16:1291-301. [PMID: 19903085 DOI: 10.1089/ten.tea.2009.0480] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.
Collapse
Affiliation(s)
- Franklin T Moutos
- Department of Surgery, Duke University Medical Center , Durham, NC, USA
| | | |
Collapse
|
28
|
Klein JD, Turner CGB, Ahmed A, Steigman SA, Zurakowski D, Fauza DO. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg 2010; 45:1354-60. [PMID: 20620344 DOI: 10.1016/j.jpedsurg.2010.02.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE We sought to compare the efficacy of engineered fetal bone grafts with acellular constructs in an autologous model of chest wall repair. METHODS Rabbits (n = 10) with a full-thickness sternal defect were equally divided in 2 groups based on how the defect was repaired, namely, either with an autologous bone construct engineered with amniotic mesenchymal stem cells on a nanofibrous scaffold or a size-matched identical scaffold with no cells. Animals were killed at comparable time-points 18 to 20 weeks postimplantation for multiple analyses. RESULTS Gross evidence of nonunion confirmed by micro-computed tomography scanning was present in 3 (60%) of 5 of the acellular implants but in no engineered grafts. Histology confirmed the presence of bone in both types of repair, albeit seemingly less robust in the acellular grafts. Mineral density in vivo was significantly higher in engineered grafts than in acellular ones, with more variability among the latter. There was no difference in alkaline phosphatase activity between the groups. CONCLUSIONS Chest wall repair with an autologous osseous graft engineered with amniotic mesenchymal stem cells leads to improved and more consistent outcomes in the midterm when compared with an equivalent acellular prosthetic repair in a leporine model. Amniotic fluid-derived engineered bone may become a practical alternative for perinatal chest wall reconstruction.
Collapse
Affiliation(s)
- Justin D Klein
- Department of Surgery, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yang L, Sun HY, Qi NM. Novel mini β-TCP 3D perfusion bioreactor for proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0177-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Gallego L, Junquera L, García E, García V, Álvarez-Viejo M, Costilla S, Fresno MF, Meana Á. Repair of Rat Mandibular Bone Defects by Alveolar Osteoblasts in a Novel Plasma-Derived Albumin Scaffold. Tissue Eng Part A 2010; 16:1179-87. [DOI: 10.1089/ten.tea.2009.0517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lorena Gallego
- Department of Oral and Maxillofacial Surgery, Cabueñes Hospital, Gijón, Spain
| | - Luis Junquera
- Department of Oral and Maxillofacial Surgery, University Central Hospital, Oviedo, Spain
- University of Medicine, Oviedo, Spain
| | - Eva García
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| | | | - María Álvarez-Viejo
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
- Transplant and Cell Therapy Unit, Central University Hospital, Oviedo, Spain
| | - Serafín Costilla
- University of Medicine, Oviedo, Spain
- Department of Radiology, Central University Hospital, Oviedo, Spain
| | - Manuel F. Fresno
- University of Medicine, Oviedo, Spain
- Department of Pathology, Central University Hospital, Oviedo, Spain
| | - Álvaro Meana
- Tissue Engineering Research Unit, Centro Comunitario de Sangre y Tejidos de Asturias, Oviedo, Spain
| |
Collapse
|
31
|
Uemura M, Refaat MM, Shinoyama M, Hayashi H, Hashimoto N, Takahashi J. Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. J Neurosci Res 2010; 88:542-51. [PMID: 19774667 DOI: 10.1002/jnr.22223] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell replacement therapy holds great promise as a means of treating neurological disorders, including Parkinson's disease. However, one of the major obstacles to the success of this treatment is the low survival rate of grafted cells, which probably results from mechanical damage, acute inflammation, and immunological rejection. To overcome this problem, we investigated the effect of different types of extracellular matrix (ECM) on the survival and differentiation of embryonic stem (ES) cell-derived neural precursor cells (NPCs). We tested materials from natural sources, including collagen, ornithine/laminin, and growth factor-reduced Matrigel (gfrMG), as well as the synthetic biomaterial PuraMatrix, which consists of self-assembling polypeptides. GfrMG efficiently supported cell survival, migration, and neurite outgrowth in vitro and promoted proliferation of grafted cells in vivo, resulting in larger graft volume and an increase in the number of TH-positive dopaminergic neurons in the graft. GfrMG did not induce dopaminergic differentiation directly; rather, it reduced the invasion of pan-leukocytic CD45-positive cells into the graft. Insofar as the inflammatory or immune response in the host brain inhibits neuronal differentiation of grafted NPCs, gfrMG may increase the number of TH-positive cells by suppressing this effect. Thus, gfrMG appears to provide a suitable scaffold that supports survival and differentiation of NPCs. However, because it is derived from mouse sarcomas, a human-derived matrix or synthetic biomaterial must be developed for clinical applications.
Collapse
Affiliation(s)
- Makoto Uemura
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Bone Tissue Engineering Using Porous Carbonate Apatite and Bone Marrow Cells. J Craniofac Surg 2010; 21:473-8. [DOI: 10.1097/scs.0b013e3181cfea6d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Galler KM, D'Souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01207f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Wang X, Nyman J, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00246ed1v01y200912tis004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Eslaminejad MB, Mirzadeh H, Nickmahzar A, Mohamadi Y, Mivehchi H. Type I collagen gel in seeding medium improves murine mesencymal stem cell loading onto the scaffold, increases their subsequent proliferation, and enhances culture mineralization. J Biomed Mater Res B Appl Biomater 2009; 90:659-67. [PMID: 19204919 DOI: 10.1002/jbm.b.31332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Collagen I as a major organic component of bone matrix may be important for establishment and maintenance of mesenchymal stem cells (MSCs) in osteogenic 3D culture. To explore this subject, murine marrow-derived MSCs were seeded onto hybrid scaffolds of alginate/gelatin/beta-tricalcium phosphate in a medium either with or without collagen I gel. The cultures were then provided with osteogenic medium and incubated for three weeks during which loading efficiency, cell proliferation and the culture mineralization were quantified and statistically compared. According to the findings, in culture with collagen, although about 60% of the cells left the scaffolds, the remaining cells, however, proliferated extensively with a population doubling number (PDN) equivalent to 2.46 +/- 0.31 and organized as cell aggregations that were heavily mineralized (calcium concentration = 1.017 +/- 0.141 mM per scaffold), whereas in the culture without collagen, about 75% of the cells left the scaffolds, less cell proliferation occurred (PDN = 1.48 +/- 0.29) and no cell aggregation was observed. The calcium concentration in this culture was 0.185 +/- 0.029 mM per scaffold. All these differences were statistically significant (p < 0.001). Taken together, these data suggested that using the collagen I in seeding medium could help mMSCs loading into the scaffold, enhance their subsequent proliferation, and increase calcium deposition in 3D culture system.
Collapse
|
36
|
Weinand C, Gupta R, Weinberg E, Madisch I, Neville CM, Jupiter JB, Vacanti JP. Toward Regenerating a Human ThumbIn Situ. Tissue Eng Part A 2009; 15:2605-15. [DOI: 10.1089/ten.tea.2008.0467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christian Weinand
- Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajiv Gupta
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Eli Weinberg
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ijad Madisch
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Craig M. Neville
- Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse B. Jupiter
- Hand and Upper Extremity Service, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph P. Vacanti
- Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
37
|
Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:199-215. [PMID: 18544016 DOI: 10.1089/ten.teb.2007.0435] [Citation(s) in RCA: 593] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue engineering combines cell and molecular biology with materials and mechanical engineering to replace damaged or diseased organs and tissues. Fibrin is a critical blood component responsible for hemostasis, which has been used extensively as a biopolymer scaffold in tissue engineering. In this review we summarize the latest developments in organ and tissue regeneration using fibrin as the scaffold material. Commercially available fibrinogen and thrombin are combined to form a fibrin hydrogel. The incorporation of bioactive peptides and growth factors via a heparin-binding delivery system improves the functionality of fibrin as a scaffold. New technologies such as inkjet printing and magnetically influenced self-assembly can alter the geometry of the fibrin structure into appropriate and predictable forms. Fibrin can be prepared from autologous plasma, and is available as glue or as engineered microbeads. Fibrin alone or in combination with other materials has been used as a biological scaffold for stem or primary cells to regenerate adipose tissue, bone, cardiac tissue, cartilage, liver, nervous tissue, ocular tissue, skin, tendons, and ligaments. Thus, fibrin is a versatile biopolymer, which shows a great potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
38
|
Horch RE, Pepescu LM, Vacanti C, Maio G. Ethical issues in cellular and molecular medicine and tissue engineering. J Cell Mol Med 2009; 12:1785-93. [PMID: 19145705 PMCID: PMC4506149 DOI: 10.1111/j.1582-4934.2008.00460.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, University of Erlangen-Nuernberg, Krankenhausstrasse 12, D-91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
39
|
Reichardt B, Sarwar A, Bartling SH, Cheung A, Grasruck M, Leidecker C, Bredella MA, Brady TJ, Gupta R. Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol 2008; 37:1069-76. [PMID: 18443787 DOI: 10.1007/s00256-008-0473-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/21/2008] [Accepted: 02/03/2008] [Indexed: 02/02/2023]
Abstract
Flat-panel volume computed tomography (fpVCT) is a recent development in imaging. We discuss some of the musculoskeletal applications of a high-resolution flat-panel CT scanner. FpVCT has four main advantages over conventional multidetector computed tomography (MDCT): high-resolution imaging; volumetric coverage; dynamic imaging; omni-scanning. The overall effective dose of fpVCT is comparable to that of MDCT scanning. Although current fpVCT technology has higher spatial resolution, its contrast resolution is slightly lower than that of MDCT (5-10HU vs. 1-3HU respectively). We discuss the efficacy and potential utility of fpVCT in various applications related to musculoskeletal radiology and review some novel applications for pediatric bones, soft tissues, tumor perfusion, and imaging of tissue-engineered bone growth. We further discuss high-resolution CT and omni-scanning (combines fluoroscopic and tomographic imaging).
Collapse
Affiliation(s)
- Benjamin Reichardt
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, FND-216, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gillette BM, Jensen JA, Tang B, Yang GJ, Bazargan-Lari A, Zhong M, Sia SK. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. NATURE MATERIALS 2008; 7:636-40. [PMID: 18511938 DOI: 10.1038/nmat2203] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/30/2008] [Indexed: 05/21/2023]
Abstract
Microscale fabrication of three-dimensional (3D) extracellular matrices (ECMs) can be used to mimic the often inhomogeneous and anisotropic properties of native tissues and to construct in vitro cellular microenvironments. Cellular contraction of fibrous natural ECMs (such as fibrin and collagen I) can detach matrices from their surroundings and destroy intended geometry. Here, we demonstrate in situ collagen fibre assembly (the nucleation and growth of new collagen fibres from preformed collagen fibres at an interface) to anchor together multiple phases of cell-seeded 3D hydrogel-based matrices against cellular contractile forces. We apply this technique to stably interface multiple microfabricated 3D natural matrices (containing collagen I, Matrigel, fibrin or alginate); each phase can be seeded with cells and designed to permit cell spreading. With collagen-fibre-mediated interfacing, microfabricated 3D matrices maintain stable interfaces (the individual phases do not separate from each other) over long-term culture (at least 3 weeks) and support spatially restricted development of multicellular structures within designed patterns. The technique enables construction of well-defined and stable patterns of a variety of 3D ECMs formed by diverse mechanisms (including temperature-, ion- and enzyme-mediated crosslinking), and presents a simple approach to interface multiple 3D matrices for biological studies and tissue engineering.
Collapse
Affiliation(s)
- Brian M Gillette
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Bilgen B, Orsini E, Aaron RK, Ciombor DM. FBS suppresses TGF-β1-induced chondrogenesis in synoviocyte pellet cultures while dexamethasone and dynamic stimuli are beneficial. J Tissue Eng Regen Med 2008; 1:436-42. [DOI: 10.1002/term.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y, Sugiyama M, Nakamura K, Kurihara H, Yamaguchi S, Tsuji K, Kawamoto T, Kato Y. Selection of Common Markers for Bone Marrow Stromal Cells from Various Bones Using Real-Time RT-PCR: Effects of Passage Number and Donor Age. ACTA ACUST UNITED AC 2007; 13:2405-17. [PMID: 17596118 DOI: 10.1089/ten.2006.0340] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone marrow stromal cells (BMSCs) are valuable in tissue engineering and cell therapy, but the quality of the cells is critical for the efficacy of therapy. To test the quality and identity of transplantable cells, we identified the molecular markers that were expressed at higher levels in BMSCs than in fibroblasts. Using numerous BMSC lines from tibia, femur, ilium, and jaw, together with skin and gum fibroblasts, we compared the gene expression profiles of these cells using DNA microarrays and low-density array cards. The differentiation potential of tibia and femur BMSCs was similar to that of iliac BMSCs, and different from jaw BMSCs, but all BMSC lines had many common markers that were expressed at much higher levels in BMSCs than in fibroblasts; several BMSC markers showed discrete expression patterns between jaw and other BMSCs. The common markers are probably useful in routine tests, but their efficacy may depend upon the passage number or donor age. In our study the passage number markedly altered the expression levels of several markers, while donor age had little effect on them. Considering the effects of in vivo location of BMSCs and passage, magnitude of increase in expression levels, and interindividual differences, we identified several reliable markers -- LIF, IGF1, PRG1, MGP, BMP4, CTGF, KCTD12, IGFBP7, TRIB2, and DYNC1I1 -- among many candidates. This marker set may be useful in a routine test for BMSCs in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Akira Igarashi
- Department of Dental and Medical Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|