1
|
Kelkawi AHA, Hashemzadeh H, Pashandi Z, Tiraihi T, Naderi-Manesh H. Differentiation of PC12 cell line into neuron by Valproic acid encapsulated in the stabilized core-shell liposome-chitosan Nano carriers. Int J Biol Macromol 2022; 210:252-260. [PMID: 35537586 DOI: 10.1016/j.ijbiomac.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
Abstract
Valproic acid (VPA) usage in high dose is teratogen with low bioavailability. Hence to improve its efficacy and reduce its side effect it was encapsulated by the Nano liposomes and stabilized by the chitosan at different concentrations. The cellular uptake, biocompatibility, loading and encapsulation efficiency of the six-different formulations (1:1, 2:1, and 4:1 of chitosan-phospholipids: VPA), PC12 differentiation to neuron cells assays (gene-expression level by qRT-PCR) were conducted for the efficacy assessment of the Nano carriers. The encapsulation efficiency (EE) results revealed that the encapsulation of the VPA corresponds to the phospholipids dose, where 2:1 formulations showed higher encapsulating rate (64.5% for non-coated and 80% for coated by chitosan). The time monitored released of VPA also showed that the chitosan could enhance its controlled release too. The cellular uptake exhibited similar uptake behavior for both the coated and the non-coated Nano carriers and cytoplasmic distribution. We witnessed no toxicity effects, at different concentrations, for both formulations. Moreover, the results indicated that the gene expression level of SOX2, NeuroD1, and Neurofilament 200 increased from 1 to 5 folds for different genes. The qRT-PCR data were confirmed by the immunofluorescence antibodies staining, where Neurofilament 68 and SOX2 cell markers were modulated during differentiation of PC12 cells. Finally, our findings suggest promising potential for the Lip-VPA-Chit Nano carrier in inducing the differentiation of PC12 into neuron for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Ali Hamad Abd Kelkawi
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biology Department, College of Science, University of Kerbala, Karbala, Iraq
| | - Hadi Hashemzadeh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Zaiddodine Pashandi
- Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. STARCH-STARKE 2020. [DOI: 10.1002/star.201900270] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maria Aparecida Vieira Teixeira Garcia
- Departamento de Alimentos, Faculdade de Farmácia/UFMG Av. Presidente Antônio Carlos, 6627 ‐ Campus Pampulha ‐ CEP 31270‐901 Belo Horizonte ‐ MG ‐ Brasil Brazil
| | - Cleverson Fernando Garcia
- Departamento de QuímicaCentro Federal de Educação Tecnológica de Minas Gerais (CEFET‐MG) Av. Amazonas, 5.253, Nova Suiça. CEP 30421‐169. Belo Horizonte ‐ MG ‐ Brasil Brazil
| | - André Augusto Gomes Faraco
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia/UFMGAv. Presidente Antônio Carlos, 6627 ‐ Campus Pampulha ‐ CEP 31270‐901 Belo Horizonte ‐ MG ‐ Brasil Brazil
| |
Collapse
|
3
|
Dehghan-Baniani D, Zahedifar P, Bagheri R, Solouk A. Curcumin-Loaded Starch Micro/Nano Particles for Biomedical Application: The Effects of Preparation Parameters on Release Profile. STARCH-STARKE 2019. [DOI: 10.1002/star.201800305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dorsa Dehghan-Baniani
- Polymeric Materials Research Group (PMRG); Department of Materials Science and Engineering; Sharif University of Technology; Tehran P.O. Box 11155-9466 Iran
- Division of Biomedical Engineering; Department of Chemical and Biological Engineering; The Hong Kong University of Science and Technology; Hong Kong China
| | - Pegah Zahedifar
- Polymeric Materials Research Group (PMRG); Department of Materials Science and Engineering; Sharif University of Technology; Tehran P.O. Box 11155-9466 Iran
| | - Reza Bagheri
- Polymeric Materials Research Group (PMRG); Department of Materials Science and Engineering; Sharif University of Technology; Tehran P.O. Box 11155-9466 Iran
| | - Atefeh Solouk
- Biomedical Engineering Department; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| |
Collapse
|
4
|
Salehi H, Mehrasa M, Nasri-Nasrabadi B, Doostmohammadi M, Seyedebrahimi R, Davari N, Rafienia M, Hosseinabadi ME, Agheb M, Siavash M. Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:110. [PMID: 29026426 PMCID: PMC5629837 DOI: 10.4103/jrms.jrms_1037_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Wound healing is a complex biological process. Some injuries lead to chronic nonhealing ulcers, and healing process is a challenge to both the patient and the medical team. We still look forward an appropriate wound dressing. MATERIALS AND METHODS In this study, starch-based nanocomposite hydrogel scaffolds reinforced by zeolite nanoparticles (nZ) were prepared for wound dressing. In addition, a herbal drug (chamomile extract) was added into the matrix to accelerate healing process. To estimate the cytocompatibility of hydrogel dressings, fibroblast mouse cells (L929) were cultured on scaffolds. Then, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium-bromide assay test and interaction of cells and scaffolds were evaluated. For evaluating healing process, 48 male rats were randomly divided into four groups of four animals each (16 rats at each step). The ulcers of the first group were treated with the same size of pure hydrogels. The second group received a bandage with the same size of hydrogel/extract/4 wt% nZ (hydrogel NZE). The third group was treated with chamomile extract, and the fourth group was considered as control without taking any medicament. Finally, the dressings were applied on the chronic refractory ulcers of five patients. RESULTS After successful surface morphology and cytocompatibility tests, the animal study was carried out. There was a significant difference between starch/extract/4 wt% nZ and other groups on wound size decrement after day 7 (P < 0.05). At the clinical pilot study step, the refractory ulcers of all five patients were healed without any hypersensitivity reaction. CONCLUSION Starch-based hydrogel/zeolite dressings may be safe and effective for chronic refractory ulcers.
Collapse
Affiliation(s)
- Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehrasa
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | | | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Navid Davari
- Department of Medical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi E Hosseinabadi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Maria Agheb
- Research Centre of Faculty of Advanced Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Abstract
Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med 2012; 6 Suppl 3:s47-59. [PMID: 22684916 DOI: 10.1002/term.1519] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 12/12/2022]
Abstract
In this study, a new formulation of nanoparticles (NPs) based on the electrostatic interaction between chitosan and chondroitin sulphate (CH-CS NPs) is proposed for the controlled release of proteins and growth factors (GFs), specifically platelet lysates (PLs). These nanoparticulate carriers are particularly promising for protein entrapment because the interactions between the polysaccharides and the entrapped proteins mimic the interactions between chondroitin sulphate and proteins in the native extracellular matrix (ECM). Spherical non-cytotoxic NPs were successfully produced, exhibiting high encapsulation efficiency for physiological levels of GFs and a controlled protein release profile for > 1 month. Moreover, it was also observed that these NPs can be uptaken by human adipose-derived stem cells (hASCs), depending on the concentration of NPs in the culture medium and incubation time. This shows the versatility of the developed NPs, which, besides acting as a protein delivery system, can also be used in the future as intracellular carriers for bioactive agents, such as nucleotides. When the PL-loaded NPs were used as a replacement of bovine serum for in vitro hASCs culture, the viability and proliferation of hASCs was not compromised. The release of PLs from CH-CS NPs also proved to be effective for the enhancement of in vitro osteogenic differentiation of hASCs, as shown by the increased levels of mineralization, suggesting not only the effective role of the delivery system but also the role of PLs as an osteogenic supplement for bone tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Vítor E Santo
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Ave Park, Guimarães, Portugal
| | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Silva SS, Mano JF, Reis RL. Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 2010; 30:200-21. [PMID: 20735324 DOI: 10.3109/07388551.2010.505561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the many advances in tissue engineering approaches, scientists still face significant challenges in trying to repair and replace soft tissues. Nature-inspired routes involving the creation of polymer-based systems of natural origins constitute an interesting alternative route to produce novel materials. The interest in these materials comes from the possibility of constructing multi-component systems that can be manipulated by composition allowing one to mimic the tissue environment required for the cellular regeneration of soft tissues. For this purpose, factors such as the design, choice, and compatibility of the polymers are considered to be key factors for successful strategies in soft tissue regeneration. More recently, polysaccharide-protein based systems have being increasingly studied and proposed for the treatment of soft tissues. The characteristics, properties, and compatibility of the resulting materials investigated in the last 10 years, as well as commercially available matrices or those currently under investigation are the subject matter of this review.
Collapse
Affiliation(s)
- Simone S Silva
- 3B's Research Group- Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of European Institute of Excellence on Tissue Engineering and Regenerative Medicine - AvePark, Zona Industrial da Gandra - Caldas das Taipas - 4806-909 Guimarães- Portugal.
| | | | | |
Collapse
|
10
|
da Silva MA, Martins A, Teixeira AA, Reis RL, Neves NM. Impact of biological agents and tissue engineering approaches on the treatment of rheumatic diseases. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:331-9. [PMID: 20025434 DOI: 10.1089/ten.teb.2009.0536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The treatment of rheumatic diseases has been the focus of many clinical studies aiming to achieve the best combination of drugs for symptom reduction. Although improved understanding of the pathophysiology of rheumatic diseases has led to the identification of effective therapeutic strategies, its cure remains unknown. Biological agents are a breakthrough in the treatment of these diseases. They proved to be more effective than the other conventional therapies in refractory inflammatory rheumatic diseases. Among them, tumor necrosis factor inhibitors are widely used, namely Etanercept, Infliximab, or Adalimumab, alone or in combination with disease-modifying antirheumatic drugs. Nevertheless, severe adverse effects have been detected in patients with history of recurrent infections, including cardiac failure or malignancy. Currently, most of the available therapies for rheumatic diseases do not have sufficient tissue specificity. Consequently, high drug doses must be administrated systemically, leading to adverse side effects associated with its possible toxicity. Drug delivery systems, by its targeted nature, are excellent solutions to overcome this problem. In this review, we will describe the state-of-the-art in clinical studies on the treatment of rheumatic diseases, emphasizing the use of biological agents and target drug delivery systems. Some alternative novel strategies of regenerative medicine and its implications for rheumatic diseases will also be discussed.
Collapse
|
11
|
Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 2010; 10:12-27. [PMID: 19688722 DOI: 10.1002/mabi.200900107] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lack of a functional vascular supply has, to a large extent, hampered the whole range of clinical applications of 'successful' laboratory-based bone tissue engineering strategies. To the present, grafts have been dependent on post-implant vascularization, which jeopardizes graft integration and often leads to its failure. For this reason, the development of strategies that could effectively induce the establishment of a microcirculation in the engineered constructs has become a major goal for the tissue engineering research community. This review addresses the role and importance of the development of a vascular network in bone tissue engineering and provides an overview of the most up to date research efforts to develop such a network.
Collapse
Affiliation(s)
- Marina I Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | |
Collapse
|
12
|
Pashkuleva I, Marques AP, Vaz F, Reis RL. Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:21-32. [PMID: 19639265 DOI: 10.1007/s10856-009-3831-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Radiation is widely used in biomaterials science for surface modification and sterilization. Herein, we describe the use of plasma and UV-irradiation to improve the biocompatibility of different starch-based blends in terms of cell adhesion and proliferation. Physical and chemical changes, introduced by the used methods, were evaluated by complementary techniques for surface analysis such as scanning electron microscopy, atomic force microscopy, contact angle analysis and X-ray photoelectron spectroscopy. The effect of the changed surface properties on the adhesion of osteoblast-like cells was studied by a direct contact assay. Generally, both treatments resulted in higher number of cells adhered to the modified surfaces. The importance of the improved biocompatibility resulting from the irradiation methods is further supported by the knowledge that both UV and plasma treatments can be used as cost-effective methods for sterilization of biomedical materials and devices.
Collapse
Affiliation(s)
- Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Taipas, Guimarães, Portugal.
| | | | | | | |
Collapse
|
13
|
Balmayor ER, Feichtinger GA, Azevedo HS, van Griensven M, Reis RL. Starch-poly-epsilon-caprolactone microparticles reduce the needed amount of BMP-2. Clin Orthop Relat Res 2009; 467:3138-48. [PMID: 19557487 PMCID: PMC2772940 DOI: 10.1007/s11999-009-0954-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/12/2009] [Indexed: 01/31/2023]
Abstract
BMP-2 is currently administered clinically using collagen matrices often requiring large amounts of BMP-2 due to burst release over a short period of time. We developed and tested a novel injectable drug delivery system consisting of starch-poly-epsilon-caprolactone microparticles for inducing osteogenesis and requiring smaller amounts of BMP-2. We evaluated BMP-2 encapsulation efficiency and the in vitro release profile by enzyme-linked immunosorbent assay. BMP-2 was rapidly released during the first 12 hours, followed by sustained release for up to 10 days. We then evaluated the osteogenic potential of dexamethasone (standard osteogenic induction agent) and BMP-2 after incorporation and during release using an osteo/myoblast cell line (C2C12). Alkaline phosphatase activity was increased by released BMP-2. Mineralization occurred after stimulation with BMP-2-loaded microparticles. A luciferase assay for osteocalcin promoter activity showed high levels of activity upon treatment with BMP-2-loaded microparticles. In contrast, no osteogenesis occurred in C2C12 cells using dexamethasone-loaded microparticles. However, human adipose stem cells exposed to the microparticles produced high amounts of alkaline phosphatase. The data suggest starch-poly-epsilon-caprolactone microparticles are suitable carriers for the incorporation and controlled release of glucocorticoids and growth factors. Specifically, they reduce the amount of BMP-2 needed and allow more sustained osteogenic effects.
Collapse
Affiliation(s)
- E R Balmayor
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, Guimarães, Portugal.
| | | | | | | | | |
Collapse
|
14
|
Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 2009; 10:1392-401. [PMID: 19385660 DOI: 10.1021/bm8014973] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major drawbacks found in most bone tissue engineering approaches developed so far consists in the lack of strategies to promote vascularisation. Some studies have addressed different issues that may enhance vascularisation in tissue engineered constructs, most of them involving the use of growth factors (GFs) that are involved in the restitution of the vascularity in a damaged zone. The use of sustained delivery systems might also play an important role in the re-establishment of angiogenesis. In this study, kappa-carrageenan, a naturally occurring polymer, was used to develop hydrogel beads with the ability to incorporate GFs with the purpose of establishing an effective angiogenesis mechanism. Some processing parameters were studied and their influence on the final bead properties was evaluated. Platelet derived growth factor (PDGF-BB) was selected as the angiogenic factor to incorporate in the developed beads, and the results demonstrate the achievement of an efficient encapsulation and controlled release profile matching those usually required for the development of a fully functional vascular network. In general, the obtained results demonstrate the potential of these systems for bone tissue engineering applications.
Collapse
Affiliation(s)
- Vítor Espírito Santo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimaraes, Portugal.
| | | | | | | | | | | | | |
Collapse
|
15
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
16
|
Oliveira A, Costa S, Sousa R, Reis R. Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions. Acta Biomater 2009; 5:1626-38. [PMID: 19188103 DOI: 10.1016/j.actbio.2008.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 strokes min(-1)) and circulating flow perfusion (Q=4 ml min(-1); t(R)=15s) for up to 14 days. The materials were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and thin-film X-ray diffraction. Cross-sections were obtained and the coating thickness was measured. The elemental composition of solution and coatings was monitored by inductively coupled plasma spectroscopy. After only 6 h of immersion in SBF it was possible to observe the formation of small nuclei of an amorphous calcium phosphate (ACP) layer. After subsequent SBF immersion from 7 to 14 days under static, agitated and circulating flow perfusion conditions, these layers grew into bone-like nanocrystalline carbonated apatites covering each scaffold fiber without compromising its initial morphology. No differences in the apatite composition/chemical structure were detectable between the coating conditions. In case of flow perfusion, the coating thickness was significantly higher. This condition, besides mimicking better the biological milieu, allowed for the coating of complex architectures at higher rates, which can greatly reduce the coating step.
Collapse
|
17
|
Balmayor E, Tuzlakoglu K, Azevedo H, Reis R. Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater 2009; 5:1035-45. [PMID: 19095509 DOI: 10.1016/j.actbio.2008.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/02/2008] [Accepted: 11/13/2008] [Indexed: 12/11/2022]
Abstract
One limitation associated with the delivery of bioactive agents concerns the short half-life of these molecules when administered intravenously, which results in their loss from the desired site. Incorporation of bioactive agents into depot vehicles provides a means to increase their persistence at the disease site. Major issues are involved in the development of a proper carrier system able to deliver the correct drug, at the desired dose, place and time. In this work, starch-poly-epsilon-caprolactone (SPCL) microparticles were developed for use in drug delivery and tissue engineering (TE) applications. SPCL microparticles were prepared by using an emulsion solvent extraction/evaporation technique, which was demonstrated to be a successful procedure to obtain particles with a spherical shape (particle size between 5 and 900 microm) and exhibiting different surface morphologies. Their chemical structure was confirmed by Fourier transform infrared spectroscopy. To evaluate the potential of the developed microparticles as a drug delivery system, dexamethasone (DEX) was used as model drug. DEX, a well-known component of osteogenic differentiation media, was entrapped into SPCL microparticles at different percentages up to 93%. The encapsulation efficiency was found to be dependent on the polymer concentration and drug-to-polymer ratio. The initial DEX release seems to be governed mainly by diffusion, and it is expected that the remaining DEX will be released when the polymeric matrix starts to degrade. In this work it was demonstrated that SPCL microparticles containing DEX can be successfully prepared and that these microparticular systems seem to be quite promising for controlled release applications, namely as carriers of important differentiation agents in TE.
Collapse
|
18
|
Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J Control Release 2009; 133:37-43. [DOI: 10.1016/j.jconrel.2008.09.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/27/2008] [Accepted: 09/15/2008] [Indexed: 11/27/2022]
|
19
|
Carvalho ELS, Grenha A, Remuñán-López C, Alonso MJ, Seijo B. Mucosal delivery of liposome-chitosan nanoparticle complexes. Methods Enzymol 2009; 465:289-312. [PMID: 19913173 DOI: 10.1016/s0076-6879(09)65015-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.
Collapse
Affiliation(s)
- Edison L S Carvalho
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
20
|
Quaglia F. Bioinspired tissue engineering: The great promise of protein delivery technologies. Int J Pharm 2008; 364:281-97. [DOI: 10.1016/j.ijpharm.2008.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
|
21
|
Mano J, Silva G, Azevedo H, Malafaya P, Sousa R, Silva S, Boesel L, Oliveira J, Santos T, Marques A, Neves N, Reis R. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2008; 4:999-1030. [PMID: 17412675 PMCID: PMC2396201 DOI: 10.1098/rsif.2007.0220] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.
Collapse
Affiliation(s)
- J.F Mano
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - G.A Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - H.S Azevedo
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - P.B Malafaya
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.A Sousa
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - S.S Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - L.F Boesel
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - J.M Oliveira
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - T.C Santos
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - A.P Marques
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - N.M Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.L Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
- Author for correspondence ()
| |
Collapse
|