1
|
Aydin MS, Marek N, Luciani T, Mohamed-Ahmed S, Lund B, Gjerde C, Mustafa K, Suliman S, Rashad A. Impact of Porosity and Stiffness of 3D Printed Polycaprolactone Scaffolds on Osteogenic Differentiation of Human Mesenchymal Stromal Cells and Activation of Dendritic Cells. ACS Biomater Sci Eng 2024. [PMID: 39487035 DOI: 10.1021/acsbiomaterials.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Despite the potential of extrusion-based printing of thermoplastic polymers in bone tissue engineering, the inherent nonporous stiff nature of the printed filaments may elicit immune responses that influence bone regeneration. In this study, bone scaffolds made of polycaprolactone (PCL) filaments with different internal microporosity and stiffness was 3D-printed. It was achieved by combining three fabrication techniques, salt leaching and 3D printing at either low or high temperatures (LT/HT) with or without nonsolvent induced phase separation (NIPS). Printing PCL at HT resulted in stiff scaffolds (modulus of elasticity (E): 403 ± 19 MPa and strain: 6.6 ± 0.1%), while NIPS-based printing at LT produced less stiff and highly flexible scaffolds (E: 53 ± 10 MPa and strain: 435 ± 105%). Moreover, the introduction of porosity by salt leaching in the printed filaments significantly changed the mechanical properties and degradation rate of the scaffolds. Furthermore, this study aimed to show how these variations influence proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC) and the maturation and activation of human monocyte-derived dendritic cells (Mo-DC). The cytocompatibility of the printed scaffolds was confirmed by live-dead imaging, metabolic activity measurement, and the continuous proliferation of hBMSC over 14 days. While all scaffolds facilitated the expression of osteogenic markers (RUNX2 and Collagen I) from hBMSC as detected through immunofluorescence staining, the variation in porosity and stiffness notably influenced the early and late mineralization. Furthermore, the flexible LT scaffolds, with porosity induced by NIPS and salt leaching, stimulated Mo-DC to adopt a pro-inflammatory phenotype marked by a significant increase in the expression of IL1B and TNF genes, alongside decreased expression of anti-inflammatory markers, IL10 and TGF1B. Altogether, the results of the current study demonstrate the importance of tailoring porosity and stiffness of PCL scaffolds to direct their biological performance toward a more immune-mediated bone healing process.
Collapse
Affiliation(s)
- Mehmet Serhat Aydin
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Nora Marek
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Theo Luciani
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Samih Mohamed-Ahmed
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Bodil Lund
- Department of Dental Medicine, Karolinska Institute, Stockholm 17177, Sweden
- Medical Unit of Plastic Surgery and Oral and Maxillofacial Surgery, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Cecilie Gjerde
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Salwa Suliman
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Xiao M, Yao J, Shao Z, Chen X. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2827-2840. [PMID: 38690985 DOI: 10.1021/acsbiomaterials.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.
Collapse
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
3
|
Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr Polym 2023; 310:120732. [PMID: 36925264 DOI: 10.1016/j.carbpol.2023.120732] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.
Collapse
|
4
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Urtaza U, Guaresti O, Gorroñogoitia I, Zubiarrain-Laserna A, Muiños-López E, Granero-Moltó F, Lamo de Espinosa JM, López-Martinez T, Mazo M, Prósper F, Zaldua AM, Anakabe J. 3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer. Biomed Mater 2022; 17. [PMID: 35700720 DOI: 10.1088/1748-605x/ac78b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
This work identifies and describes different material-scaffold geometry combinations for cartilage tissue engineering (CTE). Previously reported potentially interesting scaffold geometries were tuned and printed using bioresorbable polycaprolactone and poly(lactide-b-ethylene) block copolymer. Medical grades of both polymers were 3D printed with fused filament fabrication technology within an ISO 7 classified cleanroom. Resulting scaffolds were then optically, mechanically and biologically tested. Results indicated that a few material-scaffold geometry combinations present potential for excellent cell viability as well as for an enhance of the chondrogenic properties of the cells, hence suggesting their suitability for CTE applications.
Collapse
Affiliation(s)
| | | | | | | | - Emma Muiños-López
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain.,Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - J M Lamo de Espinosa
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Manuel Mazo
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Felipe Prósper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain.,Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | | | - Jon Anakabe
- Leartiker S. Coop., Markina-Xemein 48270, Spain
| |
Collapse
|
6
|
Man K, Joukhdar H, Manz XD, Brunet MY, Jiang LH, Rnjak-Kovacina J, Yang XB. Bone tissue engineering using 3D silk scaffolds and human dental pulp stromal cells epigenetic reprogrammed with the selective histone deacetylase inhibitor MI192. Cell Tissue Res 2022; 388:565-581. [PMID: 35362831 PMCID: PMC9110470 DOI: 10.1007/s00441-022-03613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Epigenetics plays a critical role in regulating mesenchymal stem cells’ (MSCs) fate for tissue repair and regeneration. There is increasing evidence that the inhibition of histone deacetylase (HDAC) isoform 3 can enhance MSC osteogenesis. This study investigated the potential of using a selective HDAC2 and 3 inhibitor, MI192, to promote human dental pulp stromal cells (hDPSCs) bone-like tissue formation in vitro and in vivo within porous Bombyx Mori silk scaffolds. Both 2 and 5 wt% silk scaffolds were fabricated and characterised. The 5 wt% scaffolds possess thicker internal lamellae, reduced scaffold swelling and degradation rates, whilst increased compressive modulus in comparison to the 2 wt% silk scaffold. MI192 pre-treatment of hDPSCs on 5 wt% silk scaffold significantly enhanced hDPSCs alkaline phosphatase activity (ALP). The expression of osteoblast-related genes (RUNX2, ALP, Col1a, OCN) was significantly upregulated in the MI192 pre-treated cells. Histological analysis confirmed that the MI192 pre-treated hDPSCs-silk scaffold constructs promoted bone extracellular matrix (ALP, Col1a, OCN) deposition and mineralisation compared to the untreated group. Following 6 weeks of subcutaneous implantation in nude mice, the MI192 pre-treated hDPSCs-silk scaffold constructs enhanced the vascularisation and extracellular matrix mineralisation compared to untreated control. In conclusion, these findings demonstrate the potential of using epigenetic reprogramming and silk scaffolds to promote hDPSCs bone formation efficacy, which provides evidence for clinical translation of this technology for bone augmentation.
Collapse
Affiliation(s)
- Kenny Man
- Biomaterials & Tissue Engineering Group, School of Dentistry, University of Leeds, WTBB, St. James's University Hospital, Leeds, LS97TF, UK.,School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Xue D Manz
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, School of Dentistry, University of Leeds, WTBB, St. James's University Hospital, Leeds, LS97TF, UK.
| |
Collapse
|
7
|
Rubert M, Vetsch JR, Lehtoviita I, Sommer M, Zhao F, Studart AR, Müller R, Hofmann S. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures. Tissue Eng Part A 2021; 27:1192-1204. [PMID: 33297842 DOI: 10.1089/ten.tea.2020.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells sense and respond to scaffold pore geometry and mechanical stimuli. Many fabrication methods used in bone tissue engineering render structures with poorly controlled pore geometries. Given that cell-scaffold interactions are complex, drawing a conclusion on how cells sense and respond to uncontrolled scaffold features under mechanical loading is difficult. In this study, monodisperse templated scaffolds (MTSC) were fabricated and used as well-defined porous scaffolds to study the effect of dynamic culture conditions on bone-like tissue formation. Human bone marrow-derived stromal cells were cultured on MTSC or conventional salt-leached scaffolds (SLSC) for up to 7 weeks, either under static or dynamic conditions (wall shear stress [WSS] using spinner flask bioreactors). The influence of controlled spherical pore geometry of MTSC subjected to static or dynamic conditions on osteoblast cell differentiation, bone-like tissue formation, structure, and distribution was investigated. WSS generated within the two idealized geometrical scaffold features was assessed. Distinct response to fluid flow in osteoblast cell differentiation were shown to be dependent on scaffold pore geometry. As revealed by collagen staining and microcomputed tomography images, dynamic conditions promoted a more regular extracellular matrix (ECM) formation and mineral distribution in both scaffold types compared with static conditions. The results showed that regulation of bone-related genes and the amount and the structure of mineralized ECM were dependent on scaffold pore geometry and the mechanical cues provided by the two different culture conditions. Under dynamic conditions, SLSC favored osteoblast cell differentiation and ECM formation, whereas MTSC enhanced ECM mineralization. The spherical pore shape in MTSC supported a more trabecular bone-like structure under dynamic conditions compared with MTSC statically cultured or to SLSC under either static or dynamic conditions. These results suggest that cell activity and bone-like tissue formation is driven not only by the pore geometry but also by the mechanical environment. This should be taken into account in the future design of complex scaffolds, which should favor cell differentiation while guiding the formation, structure, and distribution of the engineered bone tissue. This could help to mimic the anatomical complexity of the bone tissue structure and to adapt to each bone defect needs. Impact statement Aging of the human population leads to an increasing need for medical implants with high success rate. We provide evidence that cell activity and the amount and structure of bone-like tissue formation is dependent on the scaffold pore geometry and on the mechanical environment. Fabrication of complex scaffolds comprising concave and planar pore geometries might represent a promising direction toward the tunability and mimicry the structural complexity of the bone tissue. Moreover, the use of fabrication methods that allow a systematic fabrication of reproducible and geometrically controlled structures would simplify scaffold design optimization.
Collapse
Affiliation(s)
- Marina Rubert
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jolanda Rita Vetsch
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Iina Lehtoviita
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Marianne Sommer
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Feihu Zhao
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, United Kingdom
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven, The Netherlands
| |
Collapse
|
8
|
Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. Int J Biol Macromol 2020; 163:2145-2161. [DOI: 10.1016/j.ijbiomac.2020.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
9
|
Später T, Mariyanats AO, Syachina MA, Mironov AV, Savelyev AG, Sochilina AV, Menger MD, Vishnyakova PA, Kananykhina EY, Fatkhudinov TK, Sukhikh GT, Spitkovsky DD, Katsen-Globa A, Laschke MW, Popov VK. In Vitro and in Vivo Analysis of Adhesive, Anti-Inflammatory, and Proangiogenic Properties of Novel 3D Printed Hyaluronic Acid Glycidyl Methacrylate Hydrogel Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:5744-5757. [PMID: 33320574 DOI: 10.1021/acsbiomaterials.0c00741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we prepared hydrogel scaffolds for tissue engineering by computer-assisted extrusion three-dimensional (3D) printing with photocured (λ = 445 nm) hyaluronic acid glycidyl methacrylate (HAGM). The developed product was compared with the polylactic-co-glycolic acid (PLGA) scaffolds generated by means of the original antisolvent 3D printing methodology. The cytotoxicity and cytocompatibility of the scaffolds were analyzed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests, flow cytometry, and scanning electron microscopy. Anti-inflammatory and proangiogenic properties of the scaffolds were evaluated in the dorsal skinfold chamber mouse model by means of intravital fluorescence microscopy, histology, and immunohistochemistry throughout an observation period of 14 days. In vitro, none of the scaffolds revealed cytotoxicity on days 1, 2, and 5 after seeding with umbilical cord-derived multipotent stromal cells, and the primary cell adhesion to the surface of HAGM scaffolds was low. In vivo, implanted HAGM scaffolds showed enhanced vascularization and host tissue ingrowth, and the inflammatory response to them was less pronounced compared with PLGA scaffolds. The results indicate excellent biocompatibility and vascularization capacity of the developed 3D printed HAGM scaffolds and position them as strong candidates for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Aleksandra O Mariyanats
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Maria A Syachina
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Anton V Mironov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Alexander G Savelyev
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia.,Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia V Sochilina
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Polina A Vishnyakova
- Kulakov Scientific Center for Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation, 117198 Moscow, Russia
| | | | | | - Gennady T Sukhikh
- Kulakov Scientific Center for Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation, 117198 Moscow, Russia
| | - Dmitry D Spitkovsky
- Kulakov Scientific Center for Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation, 117198 Moscow, Russia
| | - Alisa Katsen-Globa
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Vladimir K Popov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 108840 Moscow, Russia
| |
Collapse
|
10
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev 2020; 153:28-53. [PMID: 31678360 DOI: 10.1016/j.addr.2019.09.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Several synthetic and natural materials are used in soft tissue engineering and regenerative medicine with varying degrees of success. Among them, silkworm silk protein fibroin, a naturally occurring protein-based biomaterial, exhibits many promising characteristics such as biocompatibility, controllable biodegradability, tunable mechanical properties, aqueous preparation, minimal inflammation in host tissue, low cost and ease of use. Silk fibroin is often used alone or in combination with other materials in various formats and is also a promising delivery system for bioactive compounds as part of such repair scenarios. These properties make silk fibroin an excellent biomaterial for skin tissue engineering and repair applications. This review focuses on the promising characteristics and recent advances in the use of silk fibroin for skin wound healing and/or soft-tissue repair applications. The benefits and limitations of silk fibroin as a scaffolding biomaterial in this context are also discussed. STATEMENT OF SIGNIFICANCE: Silk protein fibroin is a natural biomaterial with important biological and mechanical properties for soft tissue engineering applications. Silk fibroin is obtained from silkworms and can be purified using alkali or enzyme based degumming (removal of glue protein sericin) procedures. Fibroin is used alone or in combination with other materials in different scaffold forms, such as nanofibrous mats, hydrogels, sponges or films tailored for specific applications. The investigations carried out using silk fibroin or its blends in skin tissue engineering have increased dramatically in recent years due to the advantages of this unique biomaterial. This review focuses on the promising characteristics of silk fibroin for skin wound healing and/or soft-tissue repair applications.
Collapse
|
12
|
El-Fakharany EM, Abu-Elreesh GM, Kamoun EA, Zaki S, Abd-EL-Haleem DA. In vitro assessment of the bioactivities of sericin protein extracted from a bacterial silk-like biopolymer. RSC Adv 2020; 10:5098-5107. [PMID: 35498316 PMCID: PMC9049123 DOI: 10.1039/c9ra09419a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Sericin is one of the main components of silk proteins, which has numerous biomedical applications because of its antioxidant, anticancer and antimicrobial properties. We recently isolated and characterized a novel silk-like protein named BNES. It is of non-animal origin and is like a bacterial polymeric silk. Sericin is a very popular protein compound that is effective in treating cancerous tumors. The process of extracting it from natural silk produced by silkworms or spiders is both complex and expensive. From the published scientific literature, it has been shown that sericin has not been previously extracted from a bacterial source. In the present study, sericin was extracted from bacteria capable of producing a biopolymer named BNES whose chemical composition is like that of natural silk and its bio-therapeutic effects were evaluated for the first time. The antioxidant activity of BNES measured by DPPH and ABTS assays showed IC50 values of 0.38 and 0.41 mg mL−1, respectively. BNES displayed satisfactory cytotoxic effect against four cancer cell lines, including Huh-7, Caco-2, MCF-7 and A549 cells, with IC50 values in the ranges of ca. 0.62 ± 0.17, 0.72 ± 0.27, 0.76 ± 0.36 and 0.83 ± 0.31 mg mL−1, respectively, after 24 h of treatment and 0.51 ± 0.22, 0.49 ± 0.19, 0.41 ± 0.25 and 0.55 ± 0.38, respectively, after 48 h of treatment, without affecting normal cells (WI38 cells). The antitumor activity of BNES was established to be an apoptosis-dependent mechanism determined via cellular morphology alterations, cell cycle arrest in the sub-G1 phase and nuclear staining with highly fluorescent fragments. The antimicrobial effects of BNES were examined with yeast and Gram-negative and Gram-positive bacteria. The results confirmed its antimicrobial activity against all tested organisms at concentrations of up to 1.33 mg mL−1. The competitive advantage of the bacterial sericin BNES over sericin extracted from spider or silkworm sources is that it can be produced in very large quantities through large-scale bio-fermenters, which reduces the expected cost of production, in addition to having sustainable bacterial production source. Sericin is one of the main components of silk proteins, which has numerous biomedical applications because of its antioxidant, anticancer and antimicrobial properties.![]()
Collapse
Affiliation(s)
- Esamil M. El-Fakharany
- Proteins Research Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Gadallah M. Abu-Elreesh
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Elbadawy A. Kamoun
- Polymeric Materials Research Dep
- Advanced Technology and New Materials Research Institute (ATNMRI)
- City of Scientific Research and Technological Applications
- New Borg Al-Arab City 21934
- Egypt
| | - Sahar Zaki
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| | - Desouky A. Abd-EL-Haleem
- Environmental Biotechnology Dep
- Genetic Engineering and Biotechnology Research Institute (GEBRI)
- City of Scientific Research and Technological Applications (SRTA-City)
- New Borg Al-Arab City 21934
- Egypt
| |
Collapse
|
13
|
Nadine S, Patrício SG, Correia CR, Mano JF. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. Biofabrication 2019; 12:015005. [DOI: 10.1088/1758-5090/ab3e16] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
15
|
Fonseca DR, Sobreiro-Almeida R, Sol PC, Neves NM. Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomater Sci 2018; 6:1569-1579. [DOI: 10.1039/c8bm00073e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-orthogonal scaffolds positively influenced the osteogenic performance of a Saos-2 cell line, presenting a larger amount of calcium phosphate deposition.
Collapse
Affiliation(s)
- Diana R. Fonseca
- 3B's Research Group – Biomaterials
- Biodegradable and Biomimetic
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Rita Sobreiro-Almeida
- 3B's Research Group – Biomaterials
- Biodegradable and Biomimetic
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Paula C. Sol
- 3B's Research Group – Biomaterials
- Biodegradable and Biomimetic
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials
- Biodegradable and Biomimetic
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
16
|
Cho YS, Hong MW, Quan M, Kim SY, Lee SH, Lee SJ, Kim YY, Cho YS. Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold. J Biomed Mater Res A 2017; 105:3432-3444. [DOI: 10.1002/jbm.a.36196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Sang Cho
- Division of Mechanical and Automotive Engineering, College of Engineering; Wonkwang University, 460 Iksandae-ro; Iksan Jeonbuk 570-749 Republic of Korea
| | - Myoung Wha Hong
- Department of Orthopedics; Daejeon St. Mary's Hospital, Catholic University of Korea, 64, Daeheung-ro; Jung-gu Daejeon 301-723 Republic of Korea
| | - Meiling Quan
- Department of Orthopedics; Daejeon St. Mary's Hospital, Catholic University of Korea, 64, Daeheung-ro; Jung-gu Daejeon 301-723 Republic of Korea
| | - So-Youn Kim
- Hanbit System, Industrial Tools Circulating Center, 160, Daehwa-ro; Daedeok-gu Daejeon 306-754 Republic of Korea
| | - Se-Hwan Lee
- Division of Mechanical and Automotive Engineering, College of Engineering; Wonkwang University, 460 Iksandae-ro; Iksan Jeonbuk 570-749 Republic of Korea
| | - Seung-Jae Lee
- Division of Mechanical and Automotive Engineering, College of Engineering; Wonkwang University, 460 Iksandae-ro; Iksan Jeonbuk 570-749 Republic of Korea
| | - Young Yul Kim
- Department of Orthopedics; Daejeon St. Mary's Hospital, Catholic University of Korea, 64, Daeheung-ro; Jung-gu Daejeon 301-723 Republic of Korea
| | - Young-Sam Cho
- Division of Mechanical and Automotive Engineering, College of Engineering; Wonkwang University, 460 Iksandae-ro; Iksan Jeonbuk 570-749 Republic of Korea
| |
Collapse
|
17
|
Asakura T, Endo M, Fukuhara R, Tasei Y. 13C NMR characterization of hydrated 13C labeled Bombyx mori silk fibroin sponges prepared using glycerin, poly(ethylene glycol diglycidyl ether) and poly(ethylene glycol) as porogens. J Mater Chem B 2017; 5:2152-2160. [PMID: 32263688 DOI: 10.1039/c7tb00323d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a need to prepare softer and highly flexible Bombyx mori silk fibroin (SF) sponges for the development of biomaterials that are biodegradable and with stiffness that matches sponges and soft tissues. In this paper, we prepared SF sponges using glycerin (Glyc), poly(ethylene)glycol diglycidyl ether (PGDE) and poly(ethylene)glycol (PEG) as porogens. The detailed characterization of the hydrated SF sponges was done using three 13C solid state NMR techniques, viz.,13C refocused insensitive nuclei enhanced by polarization transfer (r-INEPT) NMR, 13C cross polarization/magic angle spinning (CP/MAS) NMR, and 13C dipolar decoupled-magic angle spinning (DD/MAS) NMR. These three NMR methods gave respective information on fast motion, slow motion, and both fast and slow motions for the local structure and dynamics of the hydrated SF sponges. There was no significant difference in the r-INEPT spectra of the three hydrated SF sponges. On the other hand, there were significant differences among the 13C CP/MAS NMR spectra of the three sponges. The fractions of two kinds of β-sheet structure, two kinds of random coil conformations with mobile and immobile motions, and the Silk I* (type II β-turn) conformation were determined for the Ser residues in the 13C DD/MAS NMR spectra. Similarly, the fractions of several conformations were also determined for Tyr, Ala and Gly residues in SF, which showed significant differences among the three hydrated sponges. The relationship between the local structure of these hydrated SF sponges and their mechanical properties was also briefly discussed.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Japan.
| | | | | | | |
Collapse
|
18
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
19
|
Sommer MR, Vetsch JR, Leemann J, Müller R, Studart AR, Hofmann S. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 105:2074-2084. [PMID: 27407014 PMCID: PMC5599946 DOI: 10.1002/jbm.b.33737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/18/2016] [Accepted: 06/06/2016] [Indexed: 11/11/2022]
Abstract
How scaffold porosity, pore diameter and geometry influence cellular behavior is-although heavily researched - merely understood, especially in 3D. This is mainly caused by a lack of suitable, reproducible scaffold fabrication methods, with processes such as gas foaming, lyophilization or particulate leaching still being the standard. Here we propose a method to generate highly porous silk fibroin scaffolds with monodisperse spherical pores, namely inverse opals, and study their effect on cell behavior. These silk fibroin inverse opal scaffolds were compared to salt-leached silk fibroin scaffolds in terms of human mesenchymal stem cell response upon osteogenic differentiation signals. While cell number remained similar on both scaffold types, extracellular matrix mineralization nearly doubled on the newly developed scaffolds, suggesting a positive effect on cell differentiation. By using the very same material with comparable average pore diameters, this increase in mineral content can be attributed to either the differences in pore diameter distribution or the pore geometry. Although the exact mechanisms leading to enhanced mineralization in inverse opals are not yet fully understood, our results indicate that control over pore geometry alone can have a major impact on the bioactivity of a scaffold toward stem cell differentiation into bone tissue. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2074-2084, 2017.
Collapse
Affiliation(s)
- Marianne R Sommer
- Department of Materials, Complex Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Jolanda R Vetsch
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - Jessica Leemann
- Department of Materials, Complex Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Ralph Müller
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zurich, 8093, Zurich, Switzerland
| | - André R Studart
- Department of Materials, Complex Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Sandra Hofmann
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zurich, 8093, Zurich, Switzerland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| |
Collapse
|
20
|
Plowright R, Dinjaski N, Zhou S, Belton DJ, Kaplan DL, Perry CC. Influence of silk-silica fusion protein design on silica condensation in vitro and cellular calcification. RSC Adv 2016; 6:21776-21788. [PMID: 26989487 DOI: 10.1039/c6ra03706b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomaterial design via genetic engineering can be utilized for the rational functionalization of proteins to promote biomaterial integration and tissue regeneration. Spider silk has been extensively studied for its biocompatibility, biodegradability and extraordinary material properties. As a protein-based biomaterial, recombinant DNA derived derivatives of spider silks have been modified with biomineralization domains which lead to silica deposition and potentially accelerated bone regeneration. However, the influence of the location of the R5 (SSKKSGSYSGSKGSKRRIL) silicifying domain fused with the spider silk protein sequence on the biosilicification process remains to be determined. Here we designed two silk-R5 fusion proteins that differed in the location of the R5 peptide, C- vs. N-terminus, where the spider silk domain consisted of a 15mer repeat of a 33 amino acid consensus sequence of the major ampullate dragline Spidroin 1 from Nephila clavipes (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT). The chemical, physical and silica deposition properties of these recombinant proteins were assessed and compared to a silk 15mer control without the R5 present. The location of the R5 peptide did not have a significant effect on wettability and surface energies, while the C-terminal location of the R5 promoted more controlled silica precipitation, suggesting differences in protein folding and possibly different access to charged amino acids that drive the silicification process. Further, cell compatibility in vitro, as well as the ability to promote human bone marrow derived mesenchymal stem cell (hMSC) differentiation were demonstrated for both variants of the fusion proteins.
Collapse
Affiliation(s)
- Robyn Plowright
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK NG11 8NS
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, United States
| | - Shun Zhou
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, United States
| | - David J Belton
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK NG11 8NS
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, United States
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, UK NG11 8NS
| |
Collapse
|
21
|
Gao Y, Mori T, Manning S, Zhao Y, Nielsen AD, Neshat A, Sharma A, Mahnen CJ, Everson HR, Crotty S, Clements RJ, Malcuit C, Hegmann E. Biocompatible 3D Liquid Crystal Elastomer Cell Scaffolds and Foams with Primary and Secondary Porous Architecture. ACS Macro Lett 2016; 5:4-9. [PMID: 35668595 DOI: 10.1021/acsmacrolett.5b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
3D biodegradable and highly regular foamlike cell scaffolds based on biocompatible side-chain liquid crystal elastomers have been prepared. Scaffolds with a primary porosity characterized by spatially interlaced, interconnected microchannels or an additional secondary porosity featuring interconnected microchannel networks define the novel elastomeric scaffolds. The macroscale morphology of the dual porosity 3D scaffold resembles vascular networks observed in tissue. 3D elastomer foams show four times higher cell proliferation capability compared to conventional porous templated films and within the channels guide spontaneous cell alignment enabling the possibility of tissue construct fabrication toward more clinically complex environments.
Collapse
Affiliation(s)
- Yunxiang Gao
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Taizo Mori
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Sarah Manning
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Yu Zhao
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Alek d. Nielsen
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Abdollah Neshat
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Anshul Sharma
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Cory J. Mahnen
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Heather R. Everson
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Sierra Crotty
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Robert J. Clements
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - Christopher Malcuit
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| | - E. Hegmann
- Liquid Crystal Institute, ‡Department of Chemistry and Biochemistry, §Chemical Physics Interdisciplinary
Program, and ∥Department of Biological Sciences, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
22
|
Sekar K, Balan KK, Sundaramoorthy S. Comparision of electro spun tassar silk fibroin-hydroxyapatite composite scaffold prepared by soaking and in-situ methods. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.matpr.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Vetsch JR, Paulsen SJ, Müller R, Hofmann S. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater 2015; 13:277-85. [PMID: 25463486 DOI: 10.1016/j.actbio.2014.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
Abstract
Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.
Collapse
|
24
|
In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0095-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Kim JY, Yang BE, Ahn JH, Park SO, Shim HW. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. J Adv Prosthodont 2014; 6:539-46. [PMID: 25551015 PMCID: PMC4279054 DOI: 10.4047/jap.2014.6.6.539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-Gide®) using a rat calvarial defect model. MATERIALS AND METHODS Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-Gide®). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS Bone regeneration was observed in the SF and Bio-Gide®-treated groups to a greater extent than in the control group (mean volume of new bone was 5.49 ± 1.48 mm(3) at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-Gide® samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks (8.75 ± 0.80 vs. 8.47 ± 0.75 mm(3), respectively, P=.592). CONCLUSION SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.
Collapse
Affiliation(s)
- Jwa-Young Kim
- Department of Oral and Maxillofacial Surgery, Hallym University School of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Hallym University School of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jin-Hee Ahn
- Department of Prosthodontics, Hallym University School of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sang O Park
- Department of Emergency Medicine, Konkuk University School of medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Hye-Won Shim
- Department of Prosthodontics, Hallym University School of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
26
|
Ambre AH, Katti DR, Katti KS. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. J Biomed Mater Res A 2014; 103:2077-101. [DOI: 10.1002/jbm.a.35342] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/15/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Avinash H. Ambre
- Department of Civil and Environmental Engineering; North Dakota State University; Fargo North Dakota 58105
| | - Dinesh R. Katti
- Department of Civil and Environmental Engineering; North Dakota State University; Fargo North Dakota 58105
| | - Kalpana S. Katti
- Department of Civil and Environmental Engineering; North Dakota State University; Fargo North Dakota 58105
| |
Collapse
|
27
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
28
|
Zhao H, Heusler E, Jones G, Li L, Werner V, Germershaus O, Ritzer J, Luehmann T, Meinel L. Decoration of silk fibroin by click chemistry for biomedical application. J Struct Biol 2014; 186:420-30. [DOI: 10.1016/j.jsb.2014.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/26/2023]
|
29
|
Hofmann S, Hilbe M, Fajardo RJ, Hagenmüller H, Nuss K, Arras M, Müller R, von Rechenberg B, Kaplan DL, Merkle HP, Meinel L. Remodeling of tissue-engineered bone structures in vivo. Eur J Pharm Biopharm 2014; 85:119-29. [PMID: 23958323 DOI: 10.1016/j.ejpb.2013.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/16/2022]
Abstract
Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation.
Collapse
Affiliation(s)
- Sandra Hofmann
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Germershaus O, Werner V, Kutscher M, Meinel L. Deciphering the mechanism of protein interaction with silk fibroin for drug delivery systems. Biomaterials 2014; 35:3427-34. [DOI: 10.1016/j.biomaterials.2013.12.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/22/2013] [Indexed: 12/24/2022]
|
31
|
Zermatten E, Vetsch JR, Ruffoni D, Hofmann S, Müller R, Steinfeld A. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor. Ann Biomed Eng 2014; 42:1085-94. [PMID: 24492950 DOI: 10.1007/s10439-014-0981-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/20/2014] [Indexed: 01/11/2023]
Abstract
Perfusion bioreactors are known to exert shear stresses on cultured cells, leading to cell differentiation and enhanced extracellular matrix deposition on scaffolds. The influence of the scaffold's porous microstructure is investigated for a polycaprolactone (PCL) scaffold with a regular microarchitecture and a silk fibroin (SF) scaffold with an irregular network of interconnected pores. Their complex 3D geometries are imaged by micro-computed tomography and used in direct pore-level simulations of the entire scaffold-bioreactor system to numerically solve the governing mass and momentum conservation equations for fluid flow through porous media. The velocity field and wall shear stress distribution are determined for both scaffolds. The PCL scaffold exhibited an asymmetric distribution with peak and plateau, while the SF scaffold exhibited a homogenous distribution and conditioned the flow more efficiently than the PCL scaffold. The methodology guides the design and optimization of the scaffold geometry.
Collapse
|
32
|
Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 2014; 10:630-40. [PMID: 24157694 DOI: 10.1016/j.actbio.2013.10.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3-D) bioprinting is the layer-by-layer deposition of biological material with the aim of achieving stable 3-D constructs for application in tissue engineering. It is a powerful tool for the spatially directed placement of multiple materials and/or cells within the 3-D sample. Encapsulated cells are protected by the bioink during the printing process. Very few materials are available that fulfill requirements for bioprinting as well as provide adequate properties for cell encapsulation during and after the printing process. A hydrogel composite including alginate and gelatin precursors was tuned with different concentrations of hydroxyapatite (HA) and characterized in terms of rheology, swelling behavior and mechanical properties to assess the versatility of the system. Instantaneous as well as long-term structural integrity of the printed hydrogel was achieved with a two-step mechanism combining the thermosensitive properties of gelatin with chemical crosslinking of alginate. Novel syringe tip heaters were developed for improved temperature control of the bioink to avoid clogging. Human mesenchymal stem cells mixed into the hydrogel precursor survived the printing process and showed high cell viability of 85% living cells after 3 days of subsequent in vitro culture. HA enabled the visualization of the printed structures with micro-computed tomography. The inclusion of HA also favors the use of the bioink for bone tissue engineering applications. By adding factors other than HA, the composite could be used as a bioink for applications in drug delivery, microsphere deposition or soft tissue engineering.
Collapse
|
33
|
Reinwald Y, Johal R, Ghaemmaghami A, Rose F, Howdle S, Shakesheff K. Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.09.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Abstract
About 43 million individuals in the US currently suffer from disabilities due to arthritis. Cartilage defects are the major source of pain in the affected joints. Current treatments, whilst alleviating some of the clinical symptoms, prove insufficient to cure the underlying irreversible cartilage loss. Stem cells represent a unique source for restoration of cartilage defects. Pre-clinical and clinical trials are currently pursued to investigate the potential of various types of stem cells and stem cell derived chondrocytes to repair arthritic joints. A major challenge with all stem cell-mediated tissue regeneration approaches is death of the transplanted cells with clearance by the immune system. Our current inability to diagnose successful or unsuccessful engraftment of transplanted cells non-invasively in vivo represents a major bottleneck for the development of successful stem cell therapies. A large variety of non-invasive Magnetic Resonance (MR) imaging techniques have been developed over the last decade, which enable sensitive in vivo detection of Matrix Associated Stem Cell Implants (MASI) and early diagnosis of related complications. While initially focused on successfully harvesting cellular MR imaging approaches with easily applicable SuperParamagnetic Iron Oxide Nanoparticles (SPIO), our team began to observe details that will facilitate clinical translation. We therefore started a broader effort to define a comprehensive set of novel, clinically applicable imaging approaches for stem cell transplants in patients. We established immediately clinically applicable nanoparticle labeling techniques for tracking stem cell transplants with MR imaging; we have evaluated the long term MR signal effects of iron oxide nanoparticle labeled MASI in vivo; and we have defined distinct signal characteristics of labeled viable and apoptotic MASI. This review article will provide an overview over these efforts and discuss important implications for clinical translation.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665; Stanford, USA
| | - Hossein Nejadnik
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665; Stanford, USA
| |
Collapse
|
35
|
Raja WK, Maccorkle S, Diwan IM, Abdurrob A, Lu J, Omenetto FG, Kaplan DL. Transdermal delivery devices: fabrication, mechanics and drug release from silk. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3704-13. [PMID: 23653252 PMCID: PMC3883884 DOI: 10.1002/smll.201202075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/18/2013] [Indexed: 05/22/2023]
Abstract
Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, the fabrication of dense microneedle arrays from silk with different drug release kinetics is reported. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles, to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs are delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery.
Collapse
Affiliation(s)
- Waseem K Raja
- Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rossi F, Santoro M, Perale G. Polymeric scaffolds as stem cell carriers in bone repair. J Tissue Eng Regen Med 2013; 9:1093-119. [DOI: 10.1002/term.1827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
| | - Marco Santoro
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Giuseppe Perale
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
- Department of Innovative Technologies; University of Southern Switzerland; Manno Switzerland
- Swiss Institute for Regenerative Medicine; Taverne Switzerland
| |
Collapse
|
37
|
Sampathkumar K, Seidi A, Srivastava A, Kumar TS, Ramakrishna S, Ramalingam M. Biomimetic Materials for Engineering Stem Cells and Tissues. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Vetsch JR, Müller R, Hofmann S. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J Tissue Eng Regen Med 2013; 9:903-17. [DOI: 10.1002/term.1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Jolanda Rita Vetsch
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Ralph Müller
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| |
Collapse
|
39
|
Abstract
In this article, our research on osteochondral lesions of the talus (OLTs) is summarized, the orthopedic literature is reviewed, and the direction of future research and treatment trends are discussed. Our research has explored the role of lesion size, significance of marrow edema, relationship of patient age, importance of lesion containment, and role of a stable cartilage lesion cap in the prognosis and outcomes of these lesions. We have identified smaller sized lesions, younger patients and contained lesions as independent predictors of success for the operative treatment of OLTs. Our data should facilitate the development of a more comprehensive treatment algorithm to more accurately predict success in operative management of these lesions.
Collapse
|
40
|
|
41
|
Tien LW, Gil ES, Park SH, Mandal BB, Kaplan DL. Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromol Biosci 2012; 12:1671-9. [DOI: 10.1002/mabi.201200193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/13/2012] [Indexed: 11/11/2022]
|
42
|
Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A. Vascularized bone tissue engineering: approaches for potential improvement. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:363-82. [PMID: 22765012 DOI: 10.1089/ten.teb.2012.0012] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significant advances have been made in bone tissue engineering (TE) in the past decade. However, classical bone TE strategies have been hampered mainly due to the lack of vascularization within the engineered bone constructs, resulting in poor implant survival and integration. In an effort toward clinical success of engineered constructs, new TE concepts have arisen to develop bone substitutes that potentially mimic native bone tissue structure and function. Large tissue replacements have failed in the past due to the slow penetration of the host vasculature, leading to necrosis at the central region of the engineered tissues. For this reason, multiple microscale strategies have been developed to induce and incorporate vascular networks within engineered bone constructs before implantation in order to achieve successful integration with the host tissue. Previous attempts to engineer vascularized bone tissue only focused on the effect of a single component among the three main components of TE (scaffold, cells, or signaling cues) and have only achieved limited success. However, with efforts to improve the engineered bone tissue substitutes, bone TE approaches have become more complex by combining multiple strategies simultaneously. The driving force behind combining various TE strategies is to produce bone replacements that more closely recapitulate human physiology. Here, we review and discuss the limitations of current bone TE approaches and possible strategies to improve vascularization in bone tissue substitutes.
Collapse
Affiliation(s)
- Lonnissa H Nguyen
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev 2012; 64:1111-22. [PMID: 22522139 DOI: 10.1016/j.addr.2012.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 12/13/2022]
Abstract
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which renders SF so exciting for biomedical applications. This pattern along with the versatility of this biopolymer has been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement.
Collapse
|
44
|
Abstract
Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.
Collapse
Affiliation(s)
- Naresh Kasoju
- Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
45
|
Lee OJ, Lee JM, Kim JH, Kim J, Kweon H, Jo YY, Park CH. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J Biomed Mater Res A 2012; 100:2018-26. [DOI: 10.1002/jbm.a.33308] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/06/2011] [Accepted: 10/21/2011] [Indexed: 11/07/2022]
|
46
|
Beloti MM, Sicchieri LG, de Oliveira PT, Rosa AL. The Influence of Osteoblast Differentiation Stage on Bone Formation in Autogenously Implanted Cell-Based Poly(Lactide-Co-Glycolide) and Calcium Phosphate Constructs. Tissue Eng Part A 2012; 18:999-1005. [DOI: 10.1089/ten.tea.2011.0405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luciana G. Sicchieri
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Lee HY, Jin GZ, Shin US, Kim JH, Kim HW. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1271-1279. [PMID: 22382734 DOI: 10.1007/s10856-012-4588-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
Here we prepared three-dimensional (3D) porous-structured biodegradable polymer scaffolds for tissue regeneration using room temperature ionic liquids (RTILs) as a novel porogen, and addressed their biological properties, including in vitro cell growth and differentiation and in vivo tissue compatibility. RTIL based on 1-butyl-3-methylimidazolium ([bmim]) bearing hydrophilic anion Cl was introduced within the polymer structure to provide a pore network. A mixture of poly(lactic acid) (PLA) with RTIL dissolved in an organic solvent formed a bi-continuous network during the drying process. Selective dissolution of the RTIL phase was facilitated in ethanol, which resulted in a porous network of the polymer phase with complete removal of the RTIL. The RTILs-assisted porous scaffolds showed a typical open-channeled network with pore sizes over 100 μm and porosities of about 86-94%. For the biocompatibility assessments of the scaffolds, mesenchymal stem cells (MSCs) derived from rat bone marrow were seeded onto the PLA scaffold, and the cell proliferation and osteoblastic differentiation behaviors were examined. Results showed a typical on-going increase in the cell population with a level comparable to that observed on the tissue culture plastic control, indicating good cell compatibility. When cultured in an osteogenic medium, the alkaline phosphatase (ALP) activity of the cells on the PLA scaffolds was stimulated to increase with time from 7 to 14 days, in a similar manner to that on the control. Moreover, the expression of genes related to osteoblasts, including collagen type I, osteocalcin and bone sialoprotein, was stimulated on the 3D PLA scaffold during culture for up to 14 days, with levels higher than those on the control, suggesting the developed scaffold provided a 3D matrix condition for osteogenesis. An in vivo pilot study conducted subcutaneously in rat for 4 weeks revealed good tissue compatibility of the scaffold, with the ingrowth of cells and formation of collageneous tissue around and deep within the pores of the scaffold and no significant inflammatory reaction. Taken together, this novel method of using RTILs as a pore generator is considered to be useful in the development of biocompatible porous polymer scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- Hye-Young Lee
- Biomaterials & Tissue Engineering Laboratory, Department of Nanobiomedical Science & WCU Research Center, Dankook University, Cheonan, South Korea
| | | | | | | | | |
Collapse
|
48
|
Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 2012; 8:1530-42. [PMID: 22202909 DOI: 10.1016/j.actbio.2011.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/24/2011] [Accepted: 12/09/2011] [Indexed: 01/15/2023]
Abstract
An important challenge in the biomaterials field is to mimic the structure of functional tissues via cell and extracellular matrix (ECM) alignment and anisotropy. Toward this goal, silk-based scaffolds resembling bone lamellar structure were developed using a freeze-drying technique. The structure could be controlled directly by solute concentration and freezing parameters, resulting in lamellar scaffolds with regular morphology. Different post-treatments, such as methanol, water annealing and steam sterilization, were investigated to induce water stability. The resulting structures exhibited significant differences in terms of morphological integrity, structure and mechanical properties. The lamellar thicknesses were ∼2.6 μm for the methanol-treated scaffolds and ∼5.8 μm for water-annealed. These values are in the range of those reported for human lamellar bone. Human bone marrow-derived mesenchymal stem cells (hMSC) were seeded on these silk fibroin lamellar scaffolds and grown under osteogenic conditions to assess the effect of the microstructure on cell behavior. Collagen in the newly deposited ECM was found aligned along the lamellar architectures. In the case of methanol-treated lamellar structures, the hMSC were able to migrate into the interior of the scaffolds, producing a multilamellar hybrid construct. The present morphology constitutes a useful pattern onto which hMSC cells attach and proliferate for guided formation of a highly oriented extracellular matrix.
Collapse
Affiliation(s)
- A L Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, CA, USA,Corresponding author: Heike E. Daldrup-Link, M.D., Ph.D., Associate Professor, Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, 725 Welch Rd, Rm 1665, Stanford, CA 94305-5654, Ph: (650) 723-8996 , Website: http://daldrup-link-lab.stanford.edu
| |
Collapse
|
50
|
Jahromi SH, Grover LM, Paxton JZ, Smith AM. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells. J Mech Behav Biomed Mater 2011; 4:1157-66. [DOI: 10.1016/j.jmbbm.2011.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/16/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
|