1
|
Narayanan G, Halim A, Hu A, Avin KG, Lu T, Zehnder D, Hato T, Chen NX, Moe SM, Lim K. Molecular Phenotyping and Mechanisms of Myocardial Fibrosis in Advanced Chronic Kidney Disease. KIDNEY360 2023; 4:1562-1579. [PMID: 37858297 PMCID: PMC10695648 DOI: 10.34067/kid.0000000000000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Key Points Myocardial fibrosis in hearts from patients with CKD is characterized by increased trimeric tensile collagen type I and decreased elastic collagen type III compared with hearts from hypertensive or healthy donors, suggesting a unique fibrotic phenotype. Myocardial fibrosis in CKD is driven by alterations in extracellular matrix proteostasis, including dysregulation of metalloproteinases and cross-linking enzymes. CKD-associated mineral stressors uniquely induce a fibronectin-independent mechanism of fibrillogenesis characterized by formation of trimeric collagen compared with proinflammatory/fibrotic cytokines. Background Myocardial fibrosis is a major life-limiting problem in CKD. Despite this, the molecular phenotype and metabolism of collagen fibrillogenesis in fibrotic hearts of patients with advanced CKD have been largely unstudied. Methods We analyzed explanted human left ventricular (LV) heart tissues in a three-arm cross-sectional cohort study of deceased donor patients on hemodialysis (HD, n =18), hypertension with preserved renal function (HTN, n =8), and healthy controls (CON, n =17), ex vivo . RNA-seq and protein analysis was performed on human donor hearts and cardiac fibroblasts treated with mineral stressors (high phosphate and high calcium). Further mechanistic studies were performed using primary cardiac fibroblasts, in vitro treated with mineral stressors, proinflammatory and profibrotic cytokines. Results Of the 43 donor participants, there was no difference in age (P > 0.2), sex (P > 0.8), or body mass index (P > 0.1) between the groups. Hearts from the HD group had extensive fibrosis (P < 0.01). All LV tissues expressed only the trimeric form of collagen type I. HD hearts expressed increased collagen type I (P < 0.03), elevated collagen type I:III ratio (P < 0.05), and decreased MMP1 (P < 0.05) and MMP2 (P < 0.05). RNA-seq revealed no significant differential gene expression of extracellular matrix proteins of interest in HD hearts, but there was significant upregulation of LH2, periostin, α -SMA, and TGF-β 1 gene expression in mineral stressor–treated cardiac fibroblasts. Both mineral stressors (P < 0.009) and cytokines (P < 0.03) increased collagen type I:III ratio. Mineral stressors induced trimeric collagen type I, but cytokine treatment induced only dimeric collagen type I in cardiac fibroblasts. Mineral stressors downregulated fibronectin (P < 0.03) and MMP2 zymogen (P < 0.01) but did not significantly affect expression of periostin, MMP1, or cross-linking enzymes. TGF-β upregulated fibronectin (P < 0.01) and periostin (P < 0.02) only. Conclusions Myocardial fibrosis in advanced CKD hearts is characterized by increased trimeric collagen type I and dysregulated collagen metabolism, and is differentially regulated by components of uremia.
Collapse
Affiliation(s)
- Gayatri Narayanan
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arvin Halim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alvin Hu
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University Health Ball Memorial Hospital, Indianapolis, Indiana
| | - Keith G. Avin
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Physical Therapy, Indiana University School of Health and Human Sciences, Indiana University, Indianapolis, Indiana
| | - Tzongshi Lu
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute Medicine, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Takashi Hato
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Neal X. Chen
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M. Moe
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
2
|
Visscher DO, Bos EJ, Peeters M, Kuzmin NV, Groot ML, Helder MN, van Zuijlen PPM. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Tissue Eng Part C Methods 2016; 22:573-84. [PMID: 27089896 DOI: 10.1089/ten.tec.2016.0073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-ɛ-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations.
Collapse
Affiliation(s)
- Dafydd O Visscher
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Ernst J Bos
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
| | - Mirte Peeters
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Nikolay V Kuzmin
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marie Louise Groot
- 4 LaserLaB Amsterdam, Department of Physics, Vrije Universiteit , Amsterdam, Netherlands
| | - Marco N Helder
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 3 Department of Orthopedic Surgery, VU Medical Center , Amsterdam, Netherlands
| | - Paul P M van Zuijlen
- 1 Department of Plastic, Reconstructive & Hand Surgery, VU Medical Center , Amsterdam, Netherlands
- 2 CTRM/MOVE Research Institute , Amsterdam, Netherlands
- 5 Red Cross Hospital Beverwijk , Beverwijk, Netherlands
| |
Collapse
|
3
|
The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014; 2014:750459. [PMID: 24800062 PMCID: PMC3988735 DOI: 10.1155/2014/750459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/16/2014] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is an optic neuropathy that affects 60 million people worldwide. The main risk factor for glaucoma is increased intraocular pressure (IOP), this is currently the only target for treatment of glaucoma. However, some patients show disease progression despite well-controlled IOP. Another possible therapeutic target is the extracellular matrix (ECM) changes in glaucoma. There is an accumulation of ECM in the lamina cribrosa (LC) and trabecular meshwork (TM) and upregulation of profibrotic factors such as transforming growth factor β (TGFβ), collagen1α1 (COL1A1), and α-smooth muscle actin (αSMA). One method of regulating fibrosis is through epigenetics; the study of heritable changes in gene function caused by mechanisms other than changes in the underlying DNA sequence. Epigenetic mechanisms have been shown to drive renal and pulmonary fibrosis by upregulating profibrotic factors. Hypoxia alters epigenetic mechanisms through regulating the cell's response and there is a hypoxic environment in the LC and TM in glaucoma. This review looks at the role that hypoxia plays in inducing aberrant epigenetic mechanisms and the role these mechanisms play in inducing fibrosis. Evidence suggests that a hypoxic environment in glaucoma may induce aberrant epigenetic mechanisms that contribute to disease fibrosis. These may prove to be relevant therapeutic targets in glaucoma.
Collapse
|
4
|
Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 2014; 731:8-19. [PMID: 24632085 DOI: 10.1016/j.ejphar.2014.02.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/19/2014] [Accepted: 02/28/2014] [Indexed: 11/25/2022]
Abstract
Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.
Collapse
Affiliation(s)
- Anu Gopal
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Vinay Kant
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Anu Gopalakrishnan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Surendra K Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| |
Collapse
|
5
|
Rosenzweig DH, Chicatun F, Nazhat SN, Quinn TM. Cartilaginous constructs using primary chondrocytes from continuous expansion culture seeded in dense collagen gels. Acta Biomater 2013; 9:9360-9. [PMID: 23896567 DOI: 10.1016/j.actbio.2013.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022]
Abstract
Cell-based therapies such as autologous chondrocyte implantation require in vitro cell expansion. However, standard culture techniques require cell passaging, leading to dedifferentiation into a fibroblast-like cell type. Primary chondrocytes grown on continuously expanding culture dishes (CE culture) limits passaging and protects against dedifferentiation. The authors tested whether CE culture chondrocytes were advantageous for producing mechanically competent cartilage matrix when three-dimensionally seeded in dense collagen gels. Primary chondrocytes, grown either in CE culture or passaged twice on static silicone dishes (SS culture; comparable to standard methods), were seeded in dense collagen gels and cultured for 3 weeks in the absence of exogenous chondrogenic growth factors. Compared with gels seeded with SS culture chondrocytes, CE chondrocyte-seeded gels had significantly higher chondrogenic gene expression after 2 and 3 weeks in culture, correlating with significantly higher aggrecan and type II collagen protein accumulation. There was no obvious difference in glycosaminoglycan content from either culture condition, yet CE chondrocyte-seeded gels were significantly thicker and had a significantly higher dynamic compressive modulus than SS chondrocyte-seeded gels after 3 weeks. Chondrocytes grown in CE culture and seeded in dense collagen gels produce more cartilaginous matrix with superior mechanical properties, making them more suitable than SS cultured cells for tissue engineering applications.
Collapse
Affiliation(s)
- D H Rosenzweig
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada
| | | | | | | |
Collapse
|
6
|
Enochson L, Brittberg M, Lindahl A. Optimization of a chondrogenic medium through the use of factorial design of experiments. Biores Open Access 2013; 1:306-13. [PMID: 23514743 PMCID: PMC3559199 DOI: 10.1089/biores.2012.0277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.
Collapse
Affiliation(s)
- Lars Enochson
- Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | | | | |
Collapse
|
7
|
The response of foetal annulus fibrosus cells to growth factors: modulation of matrix synthesis by TGF-β1 and IGF-1. Histochem Cell Biol 2011; 136:163-75. [DOI: 10.1007/s00418-011-0835-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 02/07/2023]
|
8
|
Fite BZ, Decaris M, Sun Y, Sun Y, Lam A, Ho CKL, Leach JK, Marcu L. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng Part C Methods 2011; 17:495-504. [PMID: 21303258 DOI: 10.1089/ten.tec.2010.0368] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts.
Collapse
Affiliation(s)
- Brett Z Fite
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
TGF-β1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased ERK signaling. J Biomech 2011; 44:848-55. [PMID: 21251657 DOI: 10.1016/j.jbiomech.2010.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Abstract
Cyclic stretching and growth factors like TGF-β have been used to enhance extracellular matrix (ECM) production by cells in engineered tissue to achieve requisite mechanical properties. In this study, the effects of TGF-β1 were evaluated during long-term cyclic stretching of fibrin-based tubular constructs seeded with neonatal human dermal fibroblasts. Samples were evaluated at 2, 5, and 7 weeks for tensile mechanical properties and ECM deposition. At 2 weeks, +TGF-β1 samples had 101% higher collagen concentration but no difference in ultimate tensile strength (UTS) or modulus compared to -TGF-β1 samples. However, at weeks 5 and 7, -TGF-β1 samples had higher UTS/modulus and collagen concentration, but lower elastin concentration compared to +TGF-β1 samples. The collagen was better organized in -TGF-β1 samples based on picrosirius red staining. Western blot analysis at weeks 5 and 7 showed increased phosphorylation of ERK in -TGF-β1 samples, which correlated with higher collagen deposition. The TGF-β1 effects were further evaluated by western blot for αSMA and SMAD2/3 expression, which were 16-fold and 10-fold higher in +TGF-β1 samples, respectively. The role of TGF-β1 activated p38 in inhibiting phosphorylation of ERK was evaluated by treating samples with SB203580, an inhibitor of p38 activation. SB203580-treated cells showed increased phosphorylation of ERK after 1 hour of stretching and increased collagen production after 1 week of stretching, demonstrating an inhibitory role of activated p38 via TGF-β1 signaling during cyclic stretching. One advantage of TGF-β1 treatment was the 4-fold higher elastin deposition in samples at 7 weeks. Further cyclic stretching experiments were thus conducted with constructs cultured for 5 weeks without TGF-β1 to obtain improved tensile properties followed by TGF-β1 supplementation for 2 weeks to obtain increased elastin content, which correlated with a reduction in loss of pre-stress during preconditioning for tensile testing, indicating functional elastin. This study shows that a sequential stimulus approach - cyclic stretching with delayed TGF-β1 supplementation - can be used to engineer tissue with desirable tensile and elastic properties.
Collapse
|
10
|
Bastiaansen-Jenniskens Y, de Bart A, Koevoet W, Jansen K, Verhaar J, van Osch G, DeGroot J. Elevated Levels of Cartilage Oligomeric Matrix Protein during In Vitro Cartilage Matrix Generation Decrease Collagen Fibril Diameter. Cartilage 2010; 1:200-10. [PMID: 26069552 PMCID: PMC4297071 DOI: 10.1177/1947603510361238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is a protein present in the cartilage matrix and is expressed more abundantly in osteoarthritis cartilage than in healthy cartilage. The present study was designed to investigate the effect of transforming growth factor β (TGFβ) on COMP deposition and the influence of COMP on collagen biochemistry in a long-term 3-dimensional culture. Bovine chondrocytes in alginate beads were cultured with or without 25 ng/mL TGFβ2 for 21 or 35 days. COMP was overexpressed in bovine chondrocytes using lentiviral transfection. COMP gene expression, COMP protein production, collagen and proteoglycan deposition, and collagen fibril thickness were determined. Addition of TGFβ2 resulted in more COMP mRNA and protein than the control condition without growth factors. Lentiviral transduction with COMP resulted in elevated gene expression of COMP and increased COMP levels in the alginate bead and culture medium compared to untransfected cells. Overexpression of COMP did not affect the deposition of collagen, collagen cross-linking, proteoglycan deposition, or the mechanical properties. Stimulating COMP production by either TGFβ2 or lentivirus resulted in collagen fibrils with a smaller diameter. Taken together, COMP deposition can be modulated in cartilage matrix production by the addition of growth factors or by overexpression of COMP. Inducing COMP protein expression resulted in collagen fibrils with a smaller diameter. Because it has been demonstrated that the collagen fibril diameter is associated with mechanical functioning of the matrix, modulating COMP levels should be taken into account in cartilage regeneration strategies.
Collapse
Affiliation(s)
- Y.M. Bastiaansen-Jenniskens
- Business Unit BioSciences, TNO Quality of Life, Leiden, the Netherlands,Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands,Yvonne Bastiaansen-Jenniskens, Department of Orthopaedics, Erasmus MC University Hospital, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - A.C.W. de Bart
- Business Unit BioSciences, TNO Quality of Life, Leiden, the Netherlands
| | - W. Koevoet
- Department of Otorhinolaryngology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - K.M.B. Jansen
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - J.A.N. Verhaar
- Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - G.J.V.M. van Osch
- Department of Orthopaedics, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands,Department of Otorhinolaryngology, University Medical Center Rotterdam, Erasmus Medical Center, Rotterdam, the Netherlands
| | - J. DeGroot
- Business Unit BioSciences, TNO Quality of Life, Leiden, the Netherlands
| |
Collapse
|
11
|
van Osch GJVM, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP. Cartilage repair: past and future--lessons for regenerative medicine. J Cell Mol Med 2009; 13:792-810. [PMID: 19453519 PMCID: PMC3823400 DOI: 10.1111/j.1582-4934.2009.00789.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the first cell therapeutic study to repair articular cartilage defects in the knee in 1994, several clinical studies have been reported. An overview of the results of clinical studies did not conclusively show improvement over conventional methods, mainly because few studies reach level I of evidence for effects on middle or long term. However, these explorative trials have provided valuable information about study design, mechanisms of repair and clinical outcome and have revealed that much is still unknown and further improvements are required. Furthermore, cellular and molecular studies using new technologies such as cell tracking, gene arrays and proteomics have provided more insight in the cell biology and mechanisms of joint surface regeneration. Besides articular cartilage, cartilage of other anatomical locations as well as progenitor cells are now considered as alternative cell sources. Growth Factor research has revealed some information on optimal conditions to support cartilage repair. Thus, there is hope for improvement. In order to obtain more robust and reproducible results, more detailed information is needed on many aspects including the fate of the cells, choice of cell type and culture parameters. As for the clinical aspects, it becomes clear that careful selection of patient groups is an important input parameter that should be optimized for each application. In addition, the study outcome parameters should be improved. Although reduced pain and improved function are, from the patient's perspective, the most important outcomes, there is a need for more structure/tissue-related outcome measures. Ideally, criteria and/or markers to identify patients at risk and responders to treatment are the ultimate goal for these more sophisticated regenerative approaches in joint surface repair in particular, and regenerative medicine in general.
Collapse
Affiliation(s)
- Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|