1
|
Butler DL. Evolution of functional tissue engineering for tendon and ligament repair. J Tissue Eng Regen Med 2022; 16:1091-1108. [PMID: 36397198 DOI: 10.1002/term.3360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
Abstract
This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called "bioMECHANICS") on a larger (tissue) scale to a more recent focus on biology (called "mechanoBIOLOGY") on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.
Collapse
Affiliation(s)
- David L Butler
- College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Modular Bioreactor Design for Directed Tendon/Ligament Tissue Engineering. Bioengineering (Basel) 2022; 9:bioengineering9030127. [PMID: 35324816 PMCID: PMC8945228 DOI: 10.3390/bioengineering9030127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Functional tissue-engineered tendons and ligaments remain to be prepared in a reproducible and scalable manner. This study evaluates an acellular 3D extracellular matrix (ECM) scaffold for tendon/ligament tissue engineering and their ability to support strain-induced gene regulation associated with the tenogenesis of cultured mesenchymal stromal cells. Preliminary data demonstrate unique gene regulation patterns compared to other scaffold forms, in particular in Wnt signaling. However, the need for a robust bioreactor system that minimizes process variation was also evident. A design control process was used to design and verify the functionality of a novel bioreactor. The system accommodates 3D scaffolds with clinically-relevant sizes, is capable of long-term culture with customizable mechanical strain regimens, incorporates in-line load measurement for continuous monitoring and feedback control, and allows a variety of scaffold configurations through a unique modular grip system. All critical functional specifications were met, including verification of physiological strain levels from 1–10%, frequency levels from 0.2–0.5 Hz, and accurate load measurement up to 50 N, which can be expanded on the basis of load cell capability. The design process serves as a model for establishing statistical functionality and reliability of investigative systems. This work sets the stage for detailed analyses of ECM scaffolds to identify critical differentiation signaling responses and essential matrix composition and cell–matrix interactions.
Collapse
|
3
|
Dyment NA, Barrett JG, Awad H, Bautista CA, Banes A, Butler DL. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res 2020; 38:2318-2330. [PMID: 32579266 PMCID: PMC7722018 DOI: 10.1002/jor.24784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Bioreactors are powerful tools with the potential to model tissue development and disease in vitro. For nearly four decades, bioreactors have been used to create tendon and ligament tissue-engineered constructs in order to define basic mechanisms of cell function, extracellular matrix deposition, tissue organization, injury, and tissue remodeling. This review provides a historical perspective of tendon and ligament bioreactors and their contributions to this advancing field. First, we demonstrate the need for bioreactors to improve understanding of tendon and ligament function and dysfunction. Next, we detail the history and evolution of bioreactor development and design from simple stretching of explants to fabrication and stimulation of two- and three-dimensional constructs. Then, we demonstrate how research using tendon and ligament bioreactors has led to pivotal basic science and tissue-engineering discoveries. Finally, we provide guidance for new basic, applied, and clinical research utilizing these valuable systems, recognizing that fundamental knowledge of cell-cell and cell-matrix interactions combined with appropriate mechanical and chemical stimulation of constructs could ultimately lead to functional tendon and ligament repairs in the coming decades.
Collapse
Affiliation(s)
- Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Jennifer G. Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia Tech, Leesburg, VA
| | - Hani Awad
- Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627
| | | | - Albert Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, NC
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC
| | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
4
|
Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 2016; 44:733-49. [PMID: 26817458 PMCID: PMC4792725 DOI: 10.1007/s10439-015-1535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.
Collapse
Affiliation(s)
- Joseph M Mansour
- Departments of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| | - Zhenghong Lee
- Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, Murray MM. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 2015; 43:320-30. [PMID: 25549633 PMCID: PMC4511104 DOI: 10.1177/0363546514559826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. HYPOTHESIS The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. STUDY DESIGN Controlled laboratory study. METHODS Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. RESULTS After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. CONCLUSION These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. CLINICAL RELEVANCE Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered.
Collapse
Affiliation(s)
- Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Vavken
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, University Hospital Basel, Switzerland
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Chad E. Harris
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jason T. Machan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
- Biostatistics, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Nam KH, Smith AST, Lone S, Kwon S, Kim DH. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening. ACTA ACUST UNITED AC 2014; 20:201-15. [PMID: 25385716 DOI: 10.1177/2211068214557813] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 12/13/2022]
Abstract
Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately re-create the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when using such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models that accurately mimic the physiological properties of native tissue samples and highlight the advantages of using such 3D microtissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.
Collapse
Affiliation(s)
- Ki-Hwan Nam
- Department of Bioengineering, University of Washington, Seattle, WA, USA Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea Center for Analytical Instrumentation Development, The Korea Basic Science Institute, Deajeon, Republic of Korea
| | - Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Saifullah Lone
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Zhou M, Zhang N, Liu X, Li Y, Zhang Y, Wang X, Li B, Li B. Tendon allograft sterilized by peracetic acid/ethanol combined with gamma irradiation. J Orthop Sci 2014; 19:627-36. [PMID: 24733182 DOI: 10.1007/s00776-014-0556-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/02/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. HYPOTHESIS Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. STUDY DESIGN Controlled laboratory design. METHODS HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. RESULTS Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. CONCLUSION The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. CLINICAL RELEVANCE Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. WHAT IS KNOWN ABOUT THIS SUBJECT Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. WHAT THIS STUDY ADDS TO EXISTING KNOWLEDGE Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria. Meanwhile, tendon allografts sterilised by this method maintain their physiological tendon structure, biomechanical integrity and good compatibility.
Collapse
Affiliation(s)
- Mo Zhou
- Southern Medical University, Tonghe, Guangzhou, Guangdong, 510515, China,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Breidenbach AP, Gilday SD, Lalley AL, Dyment NA, Gooch C, Shearn JT, Butler DL. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair. J Biomech 2013; 47:1941-8. [PMID: 24200342 DOI: 10.1016/j.jbiomech.2013.10.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/12/2013] [Indexed: 11/24/2022]
Abstract
Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs.
Collapse
Affiliation(s)
- Andrew P Breidenbach
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States.
| | - Steven D Gilday
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States; Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Andrea L Lalley
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States
| | - Nathaniel A Dyment
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Cynthia Gooch
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States
| | - Jason T Shearn
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States
| | - David L Butler
- Biomedical Engineering Program, College of Engineering and Applied Science, 601 Engineering Research Center, ML 0048, University of Cincinnati, Cincinnati, OH 45221-0048, United States
| |
Collapse
|
9
|
Butler DL, Dyment NA, Shearn JT, Kinneberg KRC, Breidenbach AP, Lalley AL, Gilday SD, Gooch C, Rao MB, Liu CF, Wylie C. Evolving strategies in mechanobiology to more effectively treat damaged musculoskeletal tissues. J Biomech Eng 2013; 135:020301. [PMID: 23445046 DOI: 10.1115/1.4023479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, we had four primary objectives. (1) We reviewed a brief history of the Lissner award and the individual for whom it is named, H.R. Lissner. We examined the type (musculoskeletal, cardiovascular, and other) and scale (organism to molecular) of research performed by prior Lissner awardees using a hierarchical paradigm adopted at the 2007 Biomechanics Summit of the US National Committee on Biomechanics. (2) We compared the research conducted by the Lissner award winners working in the musculoskeletal (MS) field with the evolution of our MS research and showed similar trends in scale over the past 35 years. (3) We discussed our evolving mechanobiology strategies for treating musculoskeletal injuries by accounting for clinical, biomechanical, and biological considerations. These strategies included studies to determine the function of the anterior cruciate ligament and its graft replacements as well as novel methods to enhance soft tissue healing using tissue engineering, functional tissue engineering, and, more recently, fundamental tissue engineering approaches. (4) We concluded with thoughts about future directions, suggesting grand challenges still facing bioengineers as well as the immense opportunities for young investigators working in musculoskeletal research. Hopefully, these retrospective and prospective analyses will be useful as the ASME Bioengineering Division charts future research directions.
Collapse
Affiliation(s)
- David L Butler
- Tissue Engineering and Biomechanics Laboratories, Biomedical Engineering Program, College of Engineering and Applied Sciences, University of Cincinnati; Cincinnati, OH 45221, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rowland CR, Little D, Guilak F. Factors influencing the long-term behavior of extracellular matrix-derived scaffolds for musculoskeletal soft tissue repair. J Long Term Eff Med Implants 2013; 22:181-93. [PMID: 23582110 DOI: 10.1615/jlongtermeffmedimplants.2013006120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Musculoskeletal connective tissues such as tendon, ligament, and cartilage possess a limited ability for self-repair. Tissue engineering seeks to use combinations of cells, bioactive molecules, and biomaterials to develop new treatment options for the repair or replacement of damaged tissues. The use of native extracellular matrix as scaffold material for tissue engineering has become increasingly attractive because such tissues can not only provide structural support, but also regulate cell behavior. Although demineralized bone matrix has long been recognized for its osteoinductive abilities, recent studies have identified the ability of cartilage and tendon extracellular matrices to stimulate the differentiation of mesenchymal or adipose-derived adult stem cells toward chondrogenic or tenogenic lineages, respectively. This review discusses the motivation for fabricating scaffolds from musculoskeletal tissues, the in vitro and in vivo efficacy of these tissue-derived scaffolds, and various processing techniques such as decellularization or cross-linking that can mitigate immunogenic responses, moderate the degradation profile, and enhance the mechanical properties of these constructs following long-term implantation in vivo.
Collapse
Affiliation(s)
- Christopher R Rowland
- Department of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
11
|
Sawkins M, Bowen W, Dhadda P, Markides H, Sidney L, Taylor A, Rose F, Badylak S, Shakesheff K, White L. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 2013; 9:7865-73. [PMID: 23624219 PMCID: PMC3711237 DOI: 10.1016/j.actbio.2013.04.029] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) of mammalian tissues has been isolated, decellularized and utilized as a scaffold to facilitate the repair and reconstruction of numerous tissues. Recent studies have suggested that superior function and complex tissue formation occurred when ECM scaffolds were derived from site-specific homologous tissues compared with heterologous tissues. The objectives of the present study were to apply a stringent decellularization process to demineralized bone matrix (DBM), prepared from bovine bone, and to characterize the structure and composition of the resulting ECM materials and DBM itself. Additionally, we sought to produce a soluble form of DBM and ECM which could be induced to form a hydrogel. Current clinical delivery of DBM particles for treatment of bone defects requires incorporation of the particles within a carrier liquid. Differences in osteogenic activity, inflammation and nephrotoxicity have been reported with various carrier liquids. The use of hydrogel forms of DBM or ECM may reduce the need for carrier liquids. DBM and ECM hydrogels exhibited sigmoidal gelation kinetics consistent with a nucleation and growth mechanism, with ECM hydrogels characterized by lower storage moduli than the DBM hydrogels. Enhanced proliferation of mouse primary calvarial cells was achieved on ECM hydrogels, compared with collagen type I and DBM hydrogels. These results show that DBM and ECM hydrogels have distinct structural, mechanical and biological properties and have the potential for clinical delivery without the need for carrier liquids.
Collapse
|
12
|
de Vries RBM, Buma P, Leenaars M, Ritskes-Hoitinga M, Gordijn B. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:427-35. [PMID: 22571623 DOI: 10.1089/ten.teb.2012.0059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.
Collapse
Affiliation(s)
- Rob B M de Vries
- SYRCLE/3R Research Centre, Central Animal Laboratory (Post 231), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Neman J, Hambrecht A, Cadry C, Goodarzi A, Youssefzadeh J, Chen MY, Jandial R. Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:174-87. [DOI: 10.1007/978-1-4614-4090-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Little D, Guilak F, Ruch DS. Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A 2010; 16:2307-19. [PMID: 20406104 DOI: 10.1089/ten.tea.2009.0720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p <or= 0.05). Increased seeding density increased DNA content incrementally over 28 days in culture for LDM but not COL constructs (p <or= 0.05). These findings suggest that LDM can stimulate a ligament phenotype by hASCs, and may provide a novel scaffold material for ligament engineering applications.
Collapse
Affiliation(s)
- Dianne Little
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
15
|
Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89:842-7. [PMID: 20448245 DOI: 10.1177/0022034510370803] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-epsilon-caprolactone and hydroxyapatite with 200-microm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications.
Collapse
Affiliation(s)
- K Kim
- Columbia University College of Dental Medicine, 630 W. 168th St., PH7E - CDM, New York, NY 10032, USA
| | | | | | | |
Collapse
|
16
|
Vandenburgh H. High-content drug screening with engineered musculoskeletal tissues. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:55-64. [PMID: 19728786 DOI: 10.1089/ten.teb.2009.0445] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tissue engineering for in vitro drug-screening applications based on tissue function is an active area of translational research. Compared to targeted high-throughput drug-screening methods that rapidly analyze hundreds of thousands of compounds affecting a single biochemical reaction or gene expression, high-content screening (HCS) with engineered tissues is more complex and based on the cumulative positive and negative effects of a compound on the multiple pathways altering tissue function. It may therefore serve as better predictor of in vivo activity and serve as a bridge between high-throughput drug screening and in vivo animal studies. In the case of the musculoskeletal system, tissue function includes determining improvements in the mechanical properties of bone, tendon, cartilage, and, for skeletal muscle, contractile properties such as rate of contraction/relaxation, force generation, fatigability, and recovery from fatigue. HCS of compound banks with engineered tissues requires miniature musculoskeletal organs as well as automated functional testing. The resulting technologies should be rapid, cost effective, and reduce the number of small animals required for follow-on in vivo studies. Identification of compounds that improve the repair/regeneration of damaged tissues in vivo would have extensive clinical applications for treating musculoskeletal disorders.
Collapse
Affiliation(s)
- Herman Vandenburgh
- Department of Pathology, Brown Medical School-Miriam Hospital, Providence, Rhode Island 02906, USA.
| |
Collapse
|
17
|
Spindler KP, Dunn WR. The rationale for identifying clinical predictors modifiable by tissue engineering for translational models. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:117-21. [PMID: 20078240 DOI: 10.1089/ten.teb.2009.0302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article proposes a "bedside-to-bench" approach as a model to improve clinical outcomes for patients through functional tissue engineering (TE). The link between the highest level of clinical research and evaluation criteria for musculoskeletal TE is in identifying clinically proven predictors that are amenable to functional TE. The TE solutions developed in the laboratory should then be tested in translational models to evaluate efficacy and safety prior to controlled clinical trials. The best available evidence for potentially decreasing the incidence of radiographically confirmed osteoarthritis after anterior cruciate ligament injury is preservation of meniscus function. Meniscus tears occur concurrently in approximately 50% of anterior cruciate ligament tears. TE could promote repair of torn meniscus and/or replacement of meniscus loss because meniscus tear is a proven predictor of clinically relevant outcomes (such as osteoarthritis) in patients and is amenable to a potential TE solution.
Collapse
Affiliation(s)
- Kurt P Spindler
- Department of Orthopaedics, Vanderbilt University, Vanderbilt Sports Medicine, Nashville, Tennessee 37232-8774, USA.
| | | |
Collapse
|
18
|
Nerurkar NL, Elliott DM, Mauck RL. Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 2010; 43:1017-30. [PMID: 20080239 PMCID: PMC2849875 DOI: 10.1016/j.jbiomech.2009.12.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering.
Collapse
Affiliation(s)
- Nandan L. Nerurkar
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| | - Dawn M. Elliott
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
19
|
Abstract
The clinical augmentation of bone currently involves the use of autogenous or allogeneic bone grafts and synthetic materials, all of which are associated with limitations. Research on the safe enhancement of bone formation concerns the potential value of scaffolds, stem cells, gene therapy, and chemical and mechanical signals. Optimal scaffolds are engineered to provide mechanical stability while supporting osteogenesis, osteoconduction and/or osteoinduction. Scaffold materials include natural or synthetic polymers, ceramics, and composites. The resorption, mechanical strength and efficacy of these materials can be manipulated through structural and chemical design parameters. Cell-seeded scaffolds contain stem cells or progenitor cells, such as culture-expanded marrow stromal cells and multipotent skeletal progenitor cells sourced from other tissues. Despite extensive evidence from proof-of-principle studies, bone tissue engineering has not translated to clinical practice. Much of the research involves in vitro and animal models that do not replicate potential clinical applications. Problem areas include cell sources and numbers, over-reliance on existing scaffold materials, optimum delivery of factors, control of transgene expression, vascularization, integration with host bone, and the capacity to form bone and marrow structures in vivo. Current thinking re-emphasizes the potential of biomimetic materials to stimulate, enhance, or control bone's innate regenerative capacity at the implantation site.
Collapse
Affiliation(s)
- Ericka M Bueno
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|