1
|
A S S, G MK. In vitro chondrogenic potential of marine biocomposite hydrogel construct for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39431438 DOI: 10.1080/09205063.2024.2391223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 10/22/2024]
Abstract
Cartilage tissue engineering (CTE) is a field of regenerative medicine focused on constructing ideal substitutes for injured cartilage by effectively combining cells, scaffolds, and stimulatory factors. In vitro CTE employing chondrocytes and biopolymer-based hydrogels has the potential to repair damaged cartilage. In this research, primary chondrocytes were extracted from the rib cartilage of rats and seeded on a hydrogel construct named HACF, which is made from hydroxyapatite, alginate, chitosan, and fucoidan. We then evaluated in vitro chondrogenesis on HACF cartilage construct. The results revealed that the primary chondrocytes were successfully isolated from rat rib cartilage by collagenase D digestion and HACF cartilage construct was effectively synthesized. Chondrocyte viability and its differentiation inside the scaffold HACF were determined by MTT assay, NRU assay, live/dead assay, DAPI nuclear staining, flow cytometry analysis (FCA), mRNA expression studies, and quantification of extracellular matrix components in the HACF scaffold. The findings indicated excellent chondrocyte viability within the HACF scaffold, with no noticeable changes in morphology. Apoptosis was not detected in the chondrocytes cultured on these hydrogels, as confirmed by DAPI staining, live/dead assay, and FCA. This demonstrates that the cells were capable of proliferating, dividing, multiplying, and maintaining their integrity on HACF scaffold. The results also showed more collagen deposition and glycosaminoglycan synthesis showing the good health of chondrocytes on the HACF construct. It indicates that HACF is an ideal scaffold supporting stable cartilage matrix production, highlighting its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sumayya A S
- Assistant Professor, Department of Biochemistry, T.K.M. College of Arts and Science, kollam-5, kerala, India
| | | |
Collapse
|
2
|
Zanette RDSS, Fayer L, Vasconcellos R, de Oliveira LFC, Maranduba CMDC, de Alvarenga ÉLFC, Martins MA, Brandão HDM, Munk M. Cytocompatible and osteoinductive cotton cellulose nanofiber/chitosan nanobiocomposite scaffold for bone tissue engineering. Biomed Mater 2023; 18:055016. [PMID: 37494940 DOI: 10.1088/1748-605x/aceac8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Natural polymeric nanobiocomposites hold promise in repairing damaged bone tissue in tissue engineering. These materials create an extracellular matrix (ECM)-like microenvironment that induces stem cell differentiation. In this study, we investigated a new cytocompatible nanobiocomposite made from cotton cellulose nanofibers (CNFs) combined with chitosan polymer to induce osteogenic stem cell differentiation. First, we characterized the chemical composition, nanotopography, swelling properties, and mechanical properties of the cotton CNF/chitosan nanobiocomposite scaffold. Then, we examined the biological characteristics of the nanocomposites to evaluate their cytocompatibility and osteogenic differentiation potential using human mesenchymal stem cells derived from exfoliated deciduous teeth. The results showed that the nanobiocomposite exhibited favorable cytocompatibility and promoted osteogenic differentiation of cells without the need for chemical inducers, as demonstrated by the increase in alkaline phosphatase activity and ECM mineralization. Therefore, the cotton CNF/chitosan nanobiocomposite scaffold holds great promise for bone tissue engineering applications.
Collapse
Affiliation(s)
- Rafaella de Souza Salomão Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Rebecca Vasconcellos
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Luiz Fernando Cappa de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Carlos Magno da Costa Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | | | - Maria Alice Martins
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, Brazil
| | - Humberto de Mello Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), 36038-330 Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| |
Collapse
|
3
|
Palmosi T, Tolomeo AM, Cirillo C, Sandrin D, Sciro M, Negrisolo S, Todesco M, Caicci F, Santoro M, Dal Lago E, Marchesan M, Modesti M, Bagno A, Romanato F, Grumati P, Fabozzo A, Gerosa G. Small intestinal submucosa-derived extracellular matrix as a heterotopic scaffold for cardiovascular applications. Front Bioeng Biotechnol 2022; 10:1042434. [PMID: 36578513 PMCID: PMC9792098 DOI: 10.3389/fbioe.2022.1042434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Structural cardiac lesions are often surgically repaired using prosthetic patches, which can be biological or synthetic. In the current clinical scenario, biological patches derived from the decellularization of a xenogeneic scaffold are gaining more interest as they maintain the natural architecture of the extracellular matrix (ECM) after the removal of the native cells and remnants. Once implanted in the host, these patches can induce tissue regeneration and repair, encouraging angiogenesis, migration, proliferation, and host cell differentiation. Lastly, decellularized xenogeneic patches undergo cell repopulation, thus reducing host immuno-mediated response against the graft and preventing device failure. Porcine small intestinal submucosa (pSIS) showed such properties in alternative clinical scenarios. Specifically, the US FDA approved its use in humans for urogenital procedures such as hernia repair, cystoplasties, ureteral reconstructions, stress incontinence, Peyronie's disease, penile chordee, and even urethral reconstruction for hypospadias and strictures. In addition, it has also been successfully used for skeletal muscle tissue reconstruction in young patients. However, for cardiovascular applications, the results are controversial. In this study, we aimed to validate our decellularization protocol for SIS, which is based on the use of Tergitol 15 S 9, by comparing it to our previous and efficient method (Triton X 100), which is not more available in the market. For both treatments, we evaluated the preservation of the ECM ultrastructure, biomechanical features, biocompatibility, and final bioinductive capabilities. The overall analysis shows that the SIS tissue is macroscopically distinguishable into two regions, one smooth and one wrinkle, equivalent to the ultrastructure and biochemical and proteomic profile. Furthermore, Tergitol 15 S 9 treatment does not modify tissue biomechanics, resulting in comparable to the native one and confirming the superior preservation of the collagen fibers. In summary, the present study showed that the SIS decellularized with Tergitol 15 S 9 guarantees higher performances, compared to the Triton X 100 method, in all the explored fields and for both SIS regions: smooth and wrinkle.
Collapse
Affiliation(s)
- Tiziana Palmosi
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Debora Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Optics and Bioimaging Lab, Department of Physics and Astronomy, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, University of Padova, Padua, Italy
| | | | - Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Eleonora Dal Lago
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Physics and Astronomy “G. Galilei”, University of Padova, Padua, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy,*Correspondence: Assunta Fabozzo,
| | - Gino Gerosa
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy
| |
Collapse
|
4
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
5
|
Li W, Yang X, Feng S, Yang S, Zeng R, Tu M. The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:117. [PMID: 30027312 DOI: 10.1007/s10856-018-6114-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The key factor of scaffold design for bone tissue engineering is to mimic the microenvironment of natural bone extracellular matrix (ECM) and guide cell osteogenic differentiation. The biomineralized fiber-aligned PLGA scaffolds (a-PLGA/CaPs) was developed in this study by mimicking the structure and composition of native bone ECM. The aligned PLGA fibers was prepared by wet spinning and then biomineralized via an alternate immersion method. Introduction of a bioceramic component CaP onto the PLGA fibers led to changes in surface roughness and hydrophilicity, which showed to modulate cell adhesion and cell morphology of umbilical cord mesenchymal stem cells (UCMSCs). It was found that organized actin filaments of UCMSCs cultured on both a-PLGA and a-PLGA/CaP scaffolds appeared to follow contact guidance along the aligned fibers, and those cells grown on a-PLGA/CaP scaffolds exhibited a more polarized cellular morphology. The a-PLGA/CaP scaffold with multicycles of mineralization facilitated the cell attachment on the fiber surfaces and then supported better cell adhesion and contact guidance, leading to enhancement in following proliferation and osteogenic differentiation of UCMSCs. Our results give some insights into the regulation of cell behaviors through design of ECM-mimicking structure and composition and provide an alternative wet-spun fiber-aligned scaffold with HA-mineralized layer for bone tissue engineering application.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaohui Yang
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shanbao Feng
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shenyu Yang
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Rong Zeng
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mei Tu
- Department of Material Science and Engineering, Jinan University, Guangzhou, 510632, People's Republic of China.
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
6
|
Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater 2015; 23 Suppl:S17-26. [PMID: 26235342 DOI: 10.1016/j.actbio.2015.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 01/27/2023]
Abstract
Biological scaffold materials derived from the extracellular matrix (ECM) of intact mammalian tissues have been successfully used in a variety of tissue engineering/regenerative medicine applications both in preclinical studies and in clinical applications. Although it is recognized that the materials have constructive remodeling properties, the mechanisms by which functional tissue restoration is achieved are not well understood. There is evidence to support essential roles for both the structural and functional characteristics of the biological scaffold materials. This paper provides an overview of the composition and structure of selected ECM scaffold materials, the effects of manufacturing methods upon the structural properties and resulting mechanical behavior of the scaffold materials, and the in vivo degradation and remodeling of ECM scaffolds with an emphasis on tissue function.
Collapse
|
7
|
Liang R, Yang G, Kim KE, D'Amore A, Pickering AN, Zhang C, Woo SLY. Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression. J Orthop Translat 2015; 3:114-122. [PMID: 30035048 PMCID: PMC5982358 DOI: 10.1016/j.jot.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/01/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022] Open
Abstract
Background/Objective We have previously shown that an extracellular matrix (ECM) bioscaffold derived from porcine small intestine submucosa (SIS) enhanced the healing of a gap injury of the medial collateral ligament as well as the central third defect of the patellar tendon. With the addition of a hydrogel form of SIS, we found that a transected goat anterior cruciate ligament (ACL) could also be healed. The result begs the research question of whether SIS hydrogel has positive effects on ACL fibroblasts (ACLFs) and thus facilitates ACL healing. Methods In the study, ECM-SIS hydrogel was fabricated from the digestion of decellularised and sterilised sheets of SIS derived from αGal-deficient (GalSafe) pigs. As a comparison, a pure collagen hydrogel was also fabricated from commercial collagen type I solution. The morphometrics of hydrogels was assessed with scanning electron microscopy. The ECM-SIS and collagen hydrogels had similar fibre diameters (0.105 ± 0.010 μm vs. 0.114 ± 0.004 μm), fibre orientation (0.51 ± 0.02 vs. 0.52 ± 0.02), and pore size (0.092 ± 0.012 μm vs. 0.087 ± 0.008 μm). The preservation of bioactive properties of SIS hydrogel was assessed by detecting bioactive molecules sensitive to processing and enzyme digestion, such as growth factors fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta 1 (TGF-β1), with enzyme-linked immunosorbent assay. ACLFs were isolated and expanded in culture from explants of rat ACLs (n = 3). The cells were then seeded on the hydrogels and cultured with 0%, 1%, and 10% foetal bovine serum (FBS) for 3 days and 7 days. Cell attachment was observed using a light microscope and scanning electron microscopy, whereas cell proliferation and matrix production (collagen types I and III) were examined with bromodeoxyuridine assays and reverse transcription-polymerase chain reaction, respectively. Results The results showed that FGF-2 and TGF-β1 in the SIS hydrogel were preserved by 50% (65.9 ± 26.1 ng/g dry SIS) and 90% (4.4 ± 0.6 ng/g dry SIS) relative to their contents in ECM-SIS sheets, respectively. At Day 3 of culture, ACLFs on the SIS hydrogel were found to proliferate 39%, 31%, and 22% more than those on the pure collagen hydrogel at 0%, 1%, and 10% FBS, respectively (p < 0.05). Collagen type I mRNA expression was increased by 150%, 207%, and 100%, respectively, compared to collagen hydrogel (p < 0.05), whereas collagen type III mRNA expression was increased by 123% and 132% at 0% and 1% FBS, respectively (all p < 0.05) but not at 10% FBS. By Day 7, collagen type I mRNA expression was still elevated by 137% and 100% compared to collagen hydrogel at 1% and 10% FBS, respectively (p < 0.05). Yet, collagen type III mRNA levels were not significantly different between the two groups at any FBS concentrations. Conclusion Our data showed that the ECM-SIS hydrogel not only supported the growth of ACLFs, but also promoted their proliferation and matrix production relative to a pure collagen hydrogel. As such, ECM-SIS hydrogel has potential therapeutic value to facilitate ACL healing at the early stage after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Savio L-Y. Woo
- Corresponding author. Musculoskeletal Research Center, Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 2014; 163:268-85. [PMID: 24291155 PMCID: PMC4203714 DOI: 10.1016/j.trsl.2013.11.003] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) is a meshwork of both structural and functional proteins assembled in unique tissue-specific architectures. The ECM both provides the mechanical framework for each tissue and organ and is a substrate for cell signaling. The ECM is highly dynamic, and cells both receive signals from the ECM and contribute to its content and organization. This process of "dynamic reciprocity" is key to tissue development and for homeostasis. Based upon these important functions, ECM-based materials have been used in a wide variety of tissue engineering and regenerative medicine approaches to tissue reconstruction. It has been demonstrated that ECM-based materials, when appropriately prepared, can act as inductive templates for constructive remodeling. Specifically, such materials act as templates for the induction of de novo functional, site-appropriate, tissue formation. Herein, the diverse structural and functional roles of the ECM are reviewed to provide a rationale for the use of ECM scaffolds in regenerative medicine. Translational examples of ECM scaffolds in regenerative are provided, and the potential mechanisms by which ECM scaffolds elicit constructive remodeling are discussed. A better understanding of the ability of ECM scaffold materials to define the microenvironment of the injury site will lead to improved clinical outcomes associated with their use.
Collapse
|
9
|
Tang SW, Tong WY, Shen W, Yeung KWK, Lam YW. Stringent requirement for spatial arrangement of extracellular matrix in supporting cell morphogenesis and differentiation. BMC Cell Biol 2014; 15:10. [PMID: 24661496 PMCID: PMC3987840 DOI: 10.1186/1471-2121-15-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/19/2014] [Indexed: 01/30/2023] Open
Abstract
Background In vitro experiments on the functional roles of extracellular matrix (ECM) components usually involve the culture of cells on surfaces coated with purified ECM components. These experiments can seldom recuperate the spatial arrangement of ECM found in vivo. In this study, we have overcome this obstacle by using histological sections of bovine Achilles tendon as cell culture substrates. Results We found that tendon sections can be viewed as a pre-formed block of ECM in which the collagen fibrils exhibited a spatial regularity unraveled in any artificially constructed scaffold. By carving the tendon at different angles relative to its main axis, we created different surfaces with distinct spatial arrangements of collagen fibrils. To assess the cellular responses to these surfaces, human mesenchymal stem cells (MSCs) were directly cultured on these sections, hence exposed to the collagen with different spatial orientations. Cells seeded on longitudinal tendon sections adopted a highly elongated and aligned morphology, and expressed an increased level of tenomodulin, suggesting that the collagen fibrils present in this section provide a microenvironment that facilitates cell morphogenesis and differentiation. However, MSC elongation, alignment and induction of tenomodulin diminished dramatically even as the sectioned angle changed slightly. Conclusion Our results suggest that cell functions are influenced not only by the type or concentration of ECM components, but also by the precise spatial arrangements of these molecules. The method developed in this study offers a simple and robust way for the studying of cell-ECM interactions, and opens many research avenues in the field of matrix biology.
Collapse
Affiliation(s)
| | | | | | - Kelvin W K Yeung
- Department of Biology & Chemistry, City University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
10
|
Yin Z, Chen X, Zhu T, Hu JJ, Song HX, Shen WL, Jiang LY, Heng BC, Ji JF, Ouyang HW. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater 2013; 9:9317-29. [PMID: 23896565 DOI: 10.1016/j.actbio.2013.07.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 02/01/2023]
Abstract
It is reported that decellularized collagen matrices derived from dermal skin and bone have been clinically used for tendon repair. However, the varying biological and physical properties of matrices originating from different tissues may influence the differentiation of tendon stem cells, which has not been systematically evaluated. In this study, the effects of collagenous matrices derived from different tissues (tendon, bone and dermis) on the cell differentiation of human tendon stem/progenitor cells (hTSPCs) were investigated, in the context of tendon repair. It was found that all three matrices supported the adhesion and proliferation of hTSPCs despite differences in topography. Interestingly, tendon-derived decellularized matrix promoted the tendinous phenotype in hTSPCs and inhibited their osteogenesis, even under osteogenic induction conditions, through modulation of the teno- and osteolineage-specific transcription factors Scleraxis and Runx2. Bone-derived decellularized matrix robustly induced osteogenic differentiation of hTSPCs, whereas dermal skin-derived collagen matrix had no apparent effect on hTSPC differentiation. Based on the specific biological function of the tendon-derived decellularized matrix, a tissue-engineered tendon comprising TSPCs and tendon-derived matrix was successfully fabricated for Achilles tendon reconstruction. Implantation of this cell-scaffold construct led to a more mature structure (histology score: 4.08 ± 0.61 vs. 8.51 ± 1.66), larger collagen fibrils (52.2 ± 1.6 nm vs. 47.5 ± 2.8 nm) and stronger mechanical properties (stiffness: 21.68 ± 7.1 Nm m(-1) vs.13.2 ± 5.9 Nm m(-1)) of repaired tendons compared to the control group. The results suggest that stem cells promote the rate of repair of Achilles tendon in the presence of a tendinous matrix. This study thus highlights the potential of decellularized matrix for future tissue engineering applications, as well as developing a practical strategy for functional tendon regeneration by utilizing TSPCs combined with tendon-derived decellularized matrix.
Collapse
Affiliation(s)
- Zi Yin
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tissue Engineering with Decellularized Tissues. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 2012; 8:1530-42. [PMID: 22202909 DOI: 10.1016/j.actbio.2011.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/24/2011] [Accepted: 12/09/2011] [Indexed: 01/15/2023]
Abstract
An important challenge in the biomaterials field is to mimic the structure of functional tissues via cell and extracellular matrix (ECM) alignment and anisotropy. Toward this goal, silk-based scaffolds resembling bone lamellar structure were developed using a freeze-drying technique. The structure could be controlled directly by solute concentration and freezing parameters, resulting in lamellar scaffolds with regular morphology. Different post-treatments, such as methanol, water annealing and steam sterilization, were investigated to induce water stability. The resulting structures exhibited significant differences in terms of morphological integrity, structure and mechanical properties. The lamellar thicknesses were ∼2.6 μm for the methanol-treated scaffolds and ∼5.8 μm for water-annealed. These values are in the range of those reported for human lamellar bone. Human bone marrow-derived mesenchymal stem cells (hMSC) were seeded on these silk fibroin lamellar scaffolds and grown under osteogenic conditions to assess the effect of the microstructure on cell behavior. Collagen in the newly deposited ECM was found aligned along the lamellar architectures. In the case of methanol-treated lamellar structures, the hMSC were able to migrate into the interior of the scaffolds, producing a multilamellar hybrid construct. The present morphology constitutes a useful pattern onto which hMSC cells attach and proliferate for guided formation of a highly oriented extracellular matrix.
Collapse
Affiliation(s)
- A L Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft connective tissues such as skin, ligament, muscle, and tendon, as well as vascular and neural tissue. Bioactive versions of these materials have been produced by encapsulating molecules such as drugs and growth factors during fabrication. The fibers comprising these scaffolds can be designed to match the structure of the native extracellular matrix (ECM) closely by mimicking the dimensions of the collagen fiber bundles evident in soft connective tissues. These nanostructured implants show improved biological performance over the bulk materials in aspects of cellular infiltration and in vivo integration, and the topography of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical steps in engineering complex functional tissues and crucial to improved biocompatibility and functional performance. Nanofiber matrices can be fabricated using a variety of techniques, including drawing, molecular self-assembly, freeze-drying, phase separation, and electrospinning. Among these processes, electrospinning has emerged as a simple, elegant, scalable, continuous, and reproducible technique to produce polymeric nanofiber matrices from solutions and their melts. We have shown the ability of this technique to be used to fabricate matrices composed of fibers from a few hundred nanometers to several microns in diameter by simply altering the polymer solution concentration. This chapter will discuss the use of the electrospinning technique in the fabrication of ECM-mimicking scaffolds. Furthermore, selected scaffolds will be seeded with primary adipose-derived stromal cells, imaged using scanning electron microscopy and confocal microscopy, and evaluated in terms of their capacity toward supporting cellular proliferation over time.
Collapse
|
14
|
Teh TK, Toh SL, Goh JC. Aligned Hybrid Silk Scaffold for Enhanced Differentiation of Mesenchymal Stem Cells into Ligament Fibroblasts. Tissue Eng Part C Methods 2011; 17:687-703. [DOI: 10.1089/ten.tec.2010.0513] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas K.H. Teh
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Siew-Lok Toh
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - James C.H. Goh
- Division of Bioengineering, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Song B, Cui W, Chang J. Study on the effect of inorganic salts on the alignment of electrospun fiber. J Appl Polym Sci 2011. [DOI: 10.1002/app.34197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Little D, Guilak F, Ruch DS. Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A 2010; 16:2307-19. [PMID: 20406104 DOI: 10.1089/ten.tea.2009.0720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p <or= 0.05). Increased seeding density increased DNA content incrementally over 28 days in culture for LDM but not COL constructs (p <or= 0.05). These findings suggest that LDM can stimulate a ligament phenotype by hASCs, and may provide a novel scaffold material for ligament engineering applications.
Collapse
Affiliation(s)
- Dianne Little
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
17
|
Essential modification of the Sircol Collagen Assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomater 2010; 6:3146-51. [PMID: 20144751 DOI: 10.1016/j.actbio.2010.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 01/18/2010] [Accepted: 02/01/2010] [Indexed: 11/22/2022]
Abstract
Collagen contains the unique imino acid hydroxyproline (HyPro), which is involved in the stabilization of this triple helical molecule. The concentration of HyPro is customarily used to calculate the total collagen content in a cell culture environment and in acid hydrolysates of normal and pathophysiological tissues. Radiolabelling, chromatographic and calorimetric assays have been developed over the years for the accurate determination of collagen content through HyPro estimation. Recently, the Sircol Collagen Assay (SCA) has been almost exclusively adopted as the fastest and simplest colorimetric method for the determination of collagen concentration in complex protein solutions. We show here that the colorimetric SCA, which is based on the binding of Sirius red (SR) to collagen, is flawed by interference of non-collagenous proteins (e.g. serum). In fact, we demonstrate that SCA in cell culture systems and tissue hydrolysates results in a dramatic overestimation of collagen content ranging from 3- to 24-fold. In order to rescue this otherwise very practical assay, we introduce a simple purification procedure that allows the removal of interfering non-collagenous proteins from culture media and tissue samples so that accurate measurements with SCA are now possible.
Collapse
|
18
|
McCullen SD, Haslauer CM, Loboa EG. Musculoskeletal mechanobiology: interpretation by external force and engineered substratum. J Biomech 2009; 43:119-27. [PMID: 19815216 DOI: 10.1016/j.jbiomech.2009.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Mechanobiology aims to discover how the mechanical environment affects the biological activity of cells and how cells' ability to sense these mechanical cues is converted into elicited cellular responses. Musculoskeletal mechanobiology is of particular interest given the high mechanical loads that musculoskeletal tissues experience on a daily basis. How do cells within these mechanically active tissues interpret external loads imposed on their extracellular environment, and, how are cell-substrate interactions converted into biochemical signals? This review outlines many of the main mechanotransduction mechanisms known to date, and describes recent literature examining effects of both external forces and cell-substrate interactions on musculoskeletal cells. Whether via application of external forces and/or cell-substrate interactions, our understanding and regulation of musculoskeletal mechanobiology can benefit by expanding upon traditional models, and shedding new light through novel investigative approaches. Current and future work in this field is focused on identifying specific forces, stresses, and strains at the cellular and tissue level through both experimental and computational approaches, and analyzing the role of specific proteins through fluorescence-based investigations and knockdown models.
Collapse
Affiliation(s)
- Seth D McCullen
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, 2142 Burlington Laboratories, Campus Box 7115, Raleigh, NC 27695-7115, USA
| | | | | |
Collapse
|
19
|
Phenomenon of “contact guidance“ on the surface with nano-micro-groove-like pattern and cell physiological effects. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0366-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Boruch AV, Nieponice A, Qureshi IR, Gilbert TW, Badylak SF. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res 2009; 161:217-25. [PMID: 19577253 DOI: 10.1016/j.jss.2009.02.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 12/27/2022]
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate the constructive remodeling of several tissue types. Previous studies suggest that the ECM scaffold remodeling process is dependent on microenvironmental factors, including tissue-specific biomechanical loading. The objective of the present study was to evaluate the effects of long-term catheterization (LTC), with its associated inhibition of bladder filling and physiologic biomechanical loading, on ECM scaffold remodeling following partial cystectomy in a canine model. Reconstruction of the partial cystectomy site was performed using ECM scaffolds prepared from porcine small intestinal submucosa (SIS) or porcine urinary bladder matrix (UBM). Animals were randomly assigned to either a long-term catheterization (LTC) group (n=5, catheterized 28 d) or a short-term catheterization group (STC, n=5, catheterized 24 h), and scaffold remodeling was assessed by histologic methods at 4 and 12 wk postoperatively. By 4 wk, animals in the STC group showed a well-developed and highly differentiated urothelium, a robust vascularization network, abundant smooth muscle actin (SMA), and smooth muscle myosin heavy chain (smMHC) expressing spindle-shaped cells, and many neuronal processes associated with newly formed arterioles. In contrast, at 4 wk the scaffolds in LTC animals were not epithelialized, and did not express neuronal markers. The scaffolds in the LTC group developed a dense granulation tissue containing SMA+, smMHC-, spindle-shaped cells that were morphologically and phenotypically consistent with myofibroblasts, but not smooth muscle cells. By 12 wk postoperatively, the ECM scaffolds in the STC animals showed a constructive remodeling response, with a differentiated urothelium and islands of smooth muscle cells within the remodeled scaffold. In contrast, at 12 wk the scaffolds in LTC animals had a remodeling response more consistent with fibrosis even though catheters had been removed 8 wk earlier. These findings show that early exposure of site-appropriate mechanical loading (i.e., bladder filling) mediates a constructive remodeling response after ECM repair in a canine partial cystectomy model.
Collapse
Affiliation(s)
- Alan V Boruch
- Department of Surgery, University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|