1
|
Oliverio R, Liberelle B, Patenaude V, Moreau V, Thomas E, Virgilio N, Banquy X, De Crescenzo G. Cofunctionalization of Macroporous Dextran Hydrogels with Adhesive Peptides and Growth Factors Enables Vascular Spheroid Sprouting. ACS Biomater Sci Eng 2024; 10:5080-5093. [PMID: 39038278 DOI: 10.1021/acsbiomaterials.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Vaiana Moreau
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Elian Thomas
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
2
|
Dégardin M, Gaudreault J, Oliverio R, Serafin B, Forest-Nault C, Liberelle B, De Crescenzo G. Grafting Strategies of Oxidation-Prone Coiled-Coil Peptides for Protein Capture in Bioassays: Impact of Orientation and the Oxidation State. ACS OMEGA 2023; 8:28301-28313. [PMID: 37576632 PMCID: PMC10413464 DOI: 10.1021/acsomega.3c02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Many biomedical and biosensing applications require functionalization of surfaces with proteins. To this end, the E/K coiled-coil peptide heterodimeric system has been shown to be advantageous. First, Kcoil peptides are covalently grafted onto a given surface. Ecoil-tagged proteins can then be non-covalently captured via a specific interaction with their Kcoil partners. Previously, oriented Kcoil grafting was achieved via thiol coupling, using a unique Kcoil with a terminal cysteine residue. However, cysteine-terminated Kcoil peptides are hard to produce, purify, and oxidize during storage. Indeed, they tend to homodimerize and form disulfide bonds via oxidation of their terminal thiol group, making it impossible to later graft them on thiol-reactive surfaces. Kcoil peptides also contain multiple free amine groups, available for covalent coupling through carbodiimide chemistry. Grafting Kcoil peptides on surfaces via amine coupling would thus guarantee their immobilization regardless of their terminal cysteine's oxidation state, at the expense of the control over their orientation. In this work, we compare Kcoil grafting strategies for the subsequent capture of Ecoil-tagged proteins, for applications such as surface plasmon resonance (SPR) biosensing and cell culture onto protein-decorated substrates. We compare the "classic" thiol coupling of cysteine-terminated Kcoil peptides to the amine coupling of (i) monomeric Kcoil and (ii) dimeric Kcoil-Kcoil linked by a disulfide bond. We have observed that SPR biosensing performances relying on captured Ecoil-tagged proteins were similar for amine-coupled dimeric Kcoil-Kcoil and thiol-coupled Kcoil peptides, at the expense of higher Ecoil-tagged protein consumption. For cell culture applications, Ecoil-tagged growth factors captured on amine-coupled monomeric Kcoil signaled through cell receptors similarly to those captured on thiol-coupled Kcoil peptides. Altogether, while oriented thiol coupling of cysteine-terminated Kcoil peptides remains the most reliable and versatile platform for Ecoil-tagged protein capture, amine coupling of Kcoil peptides, either monomeric or dimerized through a cysteine bond, can offer a good alternative when the challenges and costs associated with the production of monomeric cysteine-tagged Kcoil are too dissuasive for the application.
Collapse
Affiliation(s)
- Médéric Dégardin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Catherine Forest-Nault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
3
|
Oliverio R, Patenaude V, Liberelle B, Virgilio N, Banquy X, De Crescenzo G. Macroporous dextran hydrogels for controlled growth factor capture and delivery using coiled-coil interactions. Acta Biomater 2022; 153:190-203. [PMID: 36113720 DOI: 10.1016/j.actbio.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Macroporous hydrogels possess a vast potential for various applications in the biomedical field. However, due to their large pore size allowing for unrestricted diffusion in the macropore network, macroporous hydrogels alone are not able to efficiently capture and release biomolecules in a controlled manner. There is thus a need for biofunctionalized, affinity-based gels that can efficiently load and release biomolecules in a sustained and controlled manner. For this purpose, we report here the use of a E/K coiled-coil affinity pair for the controlled capture and delivery of growth factors from highly interconnected, macroporous dextran hydrogels. By conjugating the Kcoil peptide to the dextran backbone, we achieved controlled loading and release of Ecoil-tagged Epidermal and Vascular Endothelial Growth Factors. To finely tune the behavior of the gels, we propose four control parameters: (i) macropore size, (ii) Kcoil grafting density, (iii) Ecoil valency and (iv) E/K affinity. We demonstrate that Kcoil grafting can produce a 20-fold increase in passive growth factor capture by macroporous dextran gels. Furthermore, we demonstrate that our gels can release as little as 20% of the loaded growth factors over one week, while retaining bioactivity. Altogether, we propose a versatile, highly tunable platform for the controlled delivery of growth factors in biomedical applications. STATEMENT OF SIGNIFICANCE: This work presents a highly tunable platform for growth factor capture and sustained delivery using affinity peptides in macroporous, fully interconnected dextran hydrogels. It addresses several ongoing challenges by presenting: (i) a versatile platform for the delivery of a wide range of stable, bioactive molecules, (ii) a passive, affinity-based loading of growth factors in the platform, paving the way for in situ (re)loading of the device and (iii) four different control parameters to finely tune growth factor capture and release. Altogether, our macroporous dextran hydrogels have a vast potential for applications in controlled delivery, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
4
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
5
|
Takahashi K, Kim RH, Pasic L, He L, Nagasaka S, Katagiri D, May T, Shimizu A, Harris RC, Mernaugh RL, Takahashi T. Agonistic anti-CD148 monoclonal antibody attenuates diabetic nephropathy in mice. Am J Physiol Renal Physiol 2020; 318:F647-F659. [PMID: 31984788 DOI: 10.1152/ajprenal.00288.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD148 is a transmembrane protein tyrosine phosphatase (PTP) that is expressed in the renal vasculature, including the glomerulus. Previous studies have shown that CD148 plays a role in the negative regulation of growth factor signals (including epidermal growth factor and vascular endothelial growth factor), suppressing cell proliferation and transformation. However, the role of CD148 in kidney disease remains unknown. Here, we generated an agonistic anti-CD148 antibody and evaluated its effects in murine diabetic nephropathy (DN). Monoclonal antibodies (mAbs) against the mouse CD148 ectodomain sequence were generated by immunizing CD148 knockout (CD148KO) mice. The mAbs that increased CD148 activity were selected by biological (proliferation) and biochemical (PTP activity) assays. The mAb (18E1) that showed strong agonistic activity was injected (10 mg/kg ip) in streptozotocin-induced wild-type and CD148KO diabetic mice for 6 wk, and the renal phenotype was then assessed. The effects of 18E1 mAb in podocyte growth factor signals were also assessed in culture. Compared with control IgG, 18E1 mAb significantly decreased albuminuria and mesangial expansion without altering hyperglycemia and blood pressure in wild-type diabetic mice. Immunohistochemical evaluation showed that 18E1 mAb significantly prevented the reduction of podocyte number and nephrin expression and decreased glomerular fibronectin expression and renal macrophage infiltration. The 18E1 mAb showed no effects in CD148KO diabetic mice. Furthermore, we demonstrated that 18E1 mAb reduces podocyte epidermal growth factor receptor signals in culture and in diabetic mice. These findings suggest that agonistic anti-CD148 mAb attenuates DN in mice, in part by reducing epidermal growth factor receptor signals in podocytes. This antibody may be used for the treatment of early DN.
Collapse
Affiliation(s)
- Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel H Kim
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lejla Pasic
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shinya Nagasaka
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracy May
- Vanderbilt University Antibody and Protein Resource, Nashville, Tennessee
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Roth A, Murschel F, Latreille PL, Martinez VA, Liberelle B, Banquy X, De Crescenzo G. Coiled Coil Affinity-Based Systems for the Controlled Release of Biofunctionalized Gold Nanoparticles from Alginate Hydrogels. Biomacromolecules 2019; 20:1926-1936. [DOI: 10.1021/acs.biomac.9b00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Audrey Roth
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Frederic Murschel
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Pierre-Luc Latreille
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Vincent A. Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K
| | - Benoît Liberelle
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
7
|
Cambay F, Henry O, Durocher Y, De Crescenzo G. Impact of N-glycosylation on Fcγ receptor / IgG interactions: unravelling differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. MAbs 2019; 11:435-452. [PMID: 30822189 DOI: 10.1080/19420862.2019.1581017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.
Collapse
Affiliation(s)
- Florian Cambay
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada.,b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada
| | - Olivier Henry
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| | - Yves Durocher
- b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada.,c Département de Biochimie et Médecine Moléculaire , Université de Montréal , Montréal , Québec , Canada
| | - Gregory De Crescenzo
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| |
Collapse
|
8
|
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:67-77. [DOI: 10.1016/j.msec.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
9
|
Bioavailability of immobilized epidermal growth factor: Covalent versus noncovalent grafting. Biointerphases 2017; 12:010501. [PMID: 28325051 DOI: 10.1116/1.4978871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In an effort to rationalize and optimize an antiapoptotic coating combining chondroitin sulfate (CS) and epidermal growth factor (EGF) for vascular applications, the authors here report the comparison of two grafting strategies aiming to display EGF in an oriented fashion on CS. For that purpose, the authors produced, purified, and characterized a chimeric protein corresponding to EGF that was N-terminally fused to a cysteine and a coil peptide. The chimera was covalently immobilized via its free thiol group or captured via coiled-coil interactions at the surface of a biosensor or on a chondroitin sulfate coating in multiwell plates, mimicking the coating that was previously developed by them for stent-graft surfaces. The interactions of grafted EGF with the soluble domain of its receptor or the impact of grafted EGF upon vascular smooth muscle survival in proapoptotic conditions indicated that the coiled-coil based tethering was the best approach to display EGF. These results, combined to direct enzyme-linked immunosorbent assay measurements, indicated that the coiled-coil tethering approach allowed increasing the amount of bioavailable EGF when compared to covalent coupling, rather than the total amount of grafted EGF, while using much lower concentrations of tagged EGF during incubation.
Collapse
|
10
|
Addi C, Murschel F, Liberelle B, Riahi N, De Crescenzo G. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials. Acta Biomater 2017; 50:198-206. [PMID: 28069507 DOI: 10.1016/j.actbio.2017.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. STATEMENT OF SIGNIFICANCE In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its tethering via this adaptor protein modified its natural mode of interaction with gelatin. Altogether this strategy is easily adaptable to the simultaneous tethering of various growth factors.
Collapse
Affiliation(s)
- Cyril Addi
- Department of Chemical Engineering, Biomedical Science and Technology Research Group, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada
| | - Frédéric Murschel
- Department of Chemical Engineering, Biomedical Science and Technology Research Group, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Biomedical Science and Technology Research Group, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada
| | - Nesrine Riahi
- Department of Chemical Engineering, Biomedical Science and Technology Research Group, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Biomedical Science and Technology Research Group, Bio-P(2) Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (QC) H3C 3A7, Canada.
| |
Collapse
|
11
|
Polyurethane conjugating TGF-β on surface impacts local inflammation and endoplasmic reticulum stress in skeletal muscle. J Biomed Mater Res A 2017; 105:1156-1165. [DOI: 10.1002/jbm.a.35999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
|
12
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
13
|
Noel S, Fortier C, Murschel F, Belzil A, Gaudet G, Jolicoeur M, De Crescenzo G. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater 2016; 37:69-82. [PMID: 27039978 DOI: 10.1016/j.actbio.2016.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. STATEMENT OF SIGNIFICANCE This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects.
Collapse
|
14
|
Lequoy P, Murschel F, Liberelle B, Lerouge S, De Crescenzo G. Controlled co-immobilization of EGF and VEGF to optimize vascular cell survival. Acta Biomater 2016; 29:239-247. [PMID: 26485166 DOI: 10.1016/j.actbio.2015.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
Abstract
Growth factors (GFs) are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Co-immobilizing GFs on materials while preserving their bioactivity still represents a major challenge in the field of tissue regeneration and bioactive implants. In this study, we explore the potential of an oriented immobilization technique based on two high affinity peptides, namely the Ecoil and Kcoil, to allow for the simultaneous capture of the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) on a chondroitin sulfate coating. This glycosaminoglycan layer was selected as it promotes cell adhesion but reduces non-specific adsorption of plasma proteins. We demonstrate here that both Ecoil-tagged GFs can be successfully immobilized on chondroitin sulfate surfaces that had been pre-decorated with the Kcoil peptide. As shown by direct ELISA, changing the incubation concentration of the various GFs enabled to control their grafted amount. Moreover, cell survival studies with endothelial and smooth muscle cells confirmed that our oriented tethering strategy preserved GF bioactivity. Of salient interest, co-immobilizing EGF and VEGF led to better cell survival compared to each GF captured alone, suggesting a synergistic effect of these GFs. Altogether, these results demonstrate the potential of coiled-coil oriented GF tethering for the co-immobilization of macromolecules; it thus open the way to the generation of biomaterials surfaces with fine-tuned biological properties. STATEMENT OF SIGNIFICANCE Growth factors are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Controlled coimmobilization of growth factors on biomaterials while preserving their bioactivity represents a major challenge in the field of tissue regeneration and bioactive implants. This study demonstrates the potential of an oriented immobilization technique based on two high affinity peptides to allow for the simultaneous capture of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Our system allowed an efficient control on growth factor immobilization by adjusting the incubation concentrations of EGF and VEGF. Of salient interest, co-immobilizing of specific ratios of EGF and VEGF demonstrated a synergistic effect on cell survival compared to each GF captured alone.
Collapse
Affiliation(s)
- Pauline Lequoy
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada
| | - Frederic Murschel
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| |
Collapse
|
15
|
Soluble expression, purification and functional characterization of a coil peptide composed of a positively charged and hydrophobic motif. Amino Acids 2015; 48:567-77. [PMID: 26459292 DOI: 10.1007/s00726-015-2113-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
A de novo heterodimeric coiled-coil system formed by the association of two synthetic peptides, the Ecoil and Kcoil, has been previously designed and proven to be an excellent and versatile tool for various biotechnology applications. However, based on the challenges encountered during its chemical synthesis, the Kcoil peptide has been designated as a "difficult peptide". In this study, we explore the expression of the Kcoil peptide by a bacterial system as well as its subsequent purification. The maximum expression level was observed when the peptide was fused to thioredoxin and the optimized purification process consisted of three chromatographic steps: immobilized-metal affinity chromatography followed by cation-exchange chromatography and, finally, a reverse-phase high-performance liquid chromatography. This entire process led to a final volumetric production yield of 1.5 mg of pure Kcoil peptide per liter of bacterial culture, which represents a significant step towards the cost-effective production and application of coiled-coil motifs. Our results thus demonstrate for the first time that bacterial production is a viable alternative to the chemical synthesis of de novo designed coil peptides.
Collapse
|
16
|
Dorion-Thibaudeau J, St-Laurent G, Raymond C, De Crescenzo G, Durocher Y. Biotinylation of the Fcγ receptor ectodomains by mammalian cell co-transfection: application to the development of a surface plasmon resonance-based assay. J Mol Recognit 2015; 29:60-9. [PMID: 26762306 DOI: 10.1002/jmr.2495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/06/2022]
Abstract
We here report the production of four biotinylated Fcγ receptor (FcγR) ectodomains and their subsequent stable capture on streptavidin-biosensor surfaces. For receptor biotinylation, we first describe an in-cell protocol based on the co-transfection of two plasmids corresponding to one of the FcγR ectodomains and the BirA enzyme in mammalian cells. This strategy is compared with a standard sequential in vitro enzymatic biotinylation with respect to biotinylation level and yield. Biotinylated FcγR ectodomains that have been prepared with both strategies are then compared by analytical ultracentrifugation and surface plasmon resonance (SPR) analyses. Overall, we demonstrate that in-cell biotinylation is an interesting alternative to standard biotinylation protocol, as it requires less purification steps while yielding higher titers. Finally, biotin-tagged FcγRs produced with the in-cell approach are successfully applied to the development of SPR-based assays to evaluate the impact of the glycosylation pattern of monoclonal antibodies on their interaction with CD16a and CD64. In that endeavor, we unambiguously observe that highly galactosylated trastuzumab (TZM-gal), non-glycosylated trastuzumab (TZM-NG), and reference trastuzumab are characterized by different kinetic profiles upon binding to CD16a and CD64 that had been captured at the biosensor surface via their biotin tag. More precisely, while TZM-NG binding to CD16a was not detected, TZM-gal formed a more stable complex with CD16a than our reference TZM. In contrast, both glycosylated TZM bound to captured CD64 in a stable and similar fashion, whereas the interaction of their non-glycosylated form with CD64 was characterized by a higher dissociation rate.
Collapse
Affiliation(s)
- July Dorion-Thibaudeau
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-ville, Montreal, QC, Canada, H3C 3A7.,Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2
| | - Gilles St-Laurent
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2
| | - Céline Raymond
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC, Canada, H3C 3 J7
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-ville, Montreal, QC, Canada, H3C 3A7
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, Canada, H4P 2R2.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC, Canada, H3C 3 J7
| |
Collapse
|
17
|
Fortier C, Louvier E, Durocher Y, De Crescenzo G. Tailoring the Surface of a Gene Delivery Vector with Carboxymethylated Dextran: A Systematic Analysis. Biomacromolecules 2015; 16:1671-81. [DOI: 10.1021/acs.biomac.5b00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Fortier
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), École Polytechnique de Montréal, P.O.
Box 6079, succ. Centre-Ville, Montreal (QC), Canada H3C 3A7
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
| | - Elodie Louvier
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
- Département
de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal (QC), Canada H3C 3J7
| | - Yves Durocher
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
- Département
de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal (QC), Canada H3C 3J7
| | - Gregory De Crescenzo
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), École Polytechnique de Montréal, P.O.
Box 6079, succ. Centre-Ville, Montreal (QC), Canada H3C 3A7
| |
Collapse
|
18
|
Dorion-Thibaudeau J, Raymond C, Lattová E, Perreault H, Durocher Y, De Crescenzo G. Towards the development of a surface plasmon resonance assay to evaluate the glycosylation pattern of monoclonal antibodies using the extracellular domains of CD16a and CD64. J Immunol Methods 2014; 408:24-34. [PMID: 24810583 DOI: 10.1016/j.jim.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
We here report the production and purification of the extracellular domains of two Fcγ receptors, namely CD16a and CD64, by transient transfection in mammalian cells. The use of these two receptor ectodomains for the development of quantitative assays aiming at controlling the quality of monoclonal antibody production lots is then discussed. More specifically, the development of surface plasmon resonance-based biosensor assays for the evaluation of the glycosylation pattern and the aggregation state of monoclonal antibodies is presented. Our biosensor approach allows discriminating between antibodies harboring different galactosylation profiles as well as to detect low levels (i.e., less than 2%) of monoclonal antibody aggregates.
Collapse
Affiliation(s)
- July Dorion-Thibaudeau
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada; Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Céline Raymond
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada; Biochemistry Department, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Yves Durocher
- Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montreal, QC H4P 2R2, Canada; Biochemistry Department, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
19
|
Lequoy P, Liberelle B, De Crescenzo G, Lerouge S. Additive Benefits of Chondroitin Sulfate and Oriented Tethered Epidermal Growth Factor for Vascular Smooth Muscle Cell Survival. Macromol Biosci 2014; 14:720-30. [DOI: 10.1002/mabi.201300443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Pauline Lequoy
- Research Centre; Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 rue Saint Denis Montreal QC, Canada H2X 0A9
- Department of Mechanical Engineering; École de technologie supérieure (ÉTS); 1100 boul. Notre-Dame Ouest Montréal, QC Canada H3C 1K3
| | - Benoît Liberelle
- Department of Chemical Engineering; École Polytechnique de Montréal; P.O. Box 6079, succ. Centre-Ville Montréal, QC Canada H3C 3A7
| | - Gregory De Crescenzo
- Department of Chemical Engineering; École Polytechnique de Montréal; P.O. Box 6079, succ. Centre-Ville Montréal, QC Canada H3C 3A7
| | - Sophie Lerouge
- Research Centre; Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 rue Saint Denis Montreal QC, Canada H2X 0A9
- Department of Mechanical Engineering; École de technologie supérieure (ÉTS); 1100 boul. Notre-Dame Ouest Montréal, QC Canada H3C 1K3
| |
Collapse
|
20
|
An epidermal growth factor derivative with binding affinity for hydroxyapatite and titanium surfaces. Biomaterials 2013; 34:9747-53. [DOI: 10.1016/j.biomaterials.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 11/15/2022]
|
21
|
Hacker DL, Kiseljak D, Rajendra Y, Thurnheer S, Baldi L, Wurm FM. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 2013; 92:67-76. [PMID: 24021764 PMCID: PMC7129890 DOI: 10.1016/j.pep.2013.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/30/2022]
Abstract
A brief overview of principles of TGE using mammalian cells. Description of TGE processes for HEK293 and CHO cells. Description of orbitally shaken bioreactors for suspension cell cultivation. Description of polyethylenime-based transfection processes.
Transient gene expression (TGE) from mammalian cells is an increasingly important tool for the rapid production of recombinant proteins for research applications in biochemistry, structural biology, and biomedicine. Here we review methods for the transfection of human embryo kidney (HEK-293) and Chinese hamster ovary (CHO) cells in suspension culture using the cationic polymer polyethylenimine (PEI) for gene delivery.
Collapse
Affiliation(s)
- David L Hacker
- Protein Expression Core Facility, EPFL, CH-1015 Lausanne, Switzerland; Laboratory of Cellular Biotechnology, EPFL, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Coiled-coil-mediated grafting of bioactive vascular endothelial growth factor. Acta Biomater 2013; 9:6806-13. [PMID: 23485856 DOI: 10.1016/j.actbio.2013.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
Abstract
Chimeric growth factors may represent a powerful alternative to their natural counterparts for the functionalization of tissue-engineered scaffolds and applications in regenerative medicine. Their rational design should provide a simple, readily scalable production strategy while improving retention at the site of action. In that endeavor, we here report the synthesis of a chimeric protein corresponding to human vascular endothelial growth factor 165 being N-terminally fused to an E5 peptide tag (E5-VEGF). E5-VEGF was successfully expressed as a homodimer in mammalian cells. Following affinity purification, in vitro surface plasmon resonance biosensing and cell survival assays confirmed diffusible E5-VEGF ability to bind to its receptor ectodomains, while observed morphological phenotypes confirmed its anti-apoptotic features. Additional surface plasmon resonance assays highlighted that E5-VEGF could be specifically captured with high stability when interacting with covalently immobilized K5 peptide (a synthetic peptide designed to bind to the E5 moiety of chimeric hVEGF). This immobilization strategy was applied to glass substrates and chimeric hVEGF was shown to be maintained in a functionally active state following capture. Altogether, our data demonstrated that stable hVEGF capture can be performed via coiled-coil interactions without impacting hVEGF bioactivity, thus opening up the way to future applications in the field of tissue engineering and regenerative medicine.
Collapse
|
23
|
Zustiak SP, Wei Y, Leach JB. Protein-hydrogel interactions in tissue engineering: mechanisms and applications. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:160-71. [PMID: 23150926 DOI: 10.1089/ten.teb.2012.0458] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein-hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel-protein interactions that will advance our ability to control the cell-biomaterial interface.
Collapse
Affiliation(s)
- Silviya P Zustiak
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
24
|
Fortier C, De Crescenzo G, Durocher Y. A versatile coiled-coil tethering system for the oriented display of ligands on nanocarriers for targeted gene delivery. Biomaterials 2012; 34:1344-53. [PMID: 23137397 DOI: 10.1016/j.biomaterials.2012.10.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
Surface modification of non-viral gene delivery nanocarriers may provide advanced features such as receptor targeting, endosomal escape and nuclear import. We here report the design of a versatile and tunable immobilization protocol to functionalize nanocarriers for improved transient gene expression. Our strategy is based on specific interactions occurring between a coil-tagged ligand and a complementary coil-functionalized nanocarrier. As a proof of concept, targeting of DNA/polyethylenimine polyplexes to the epidermal growth factor receptor of A431 cells was investigated. Coiled-coil-mediated oriented tethering of epidermal growth factor triggered a drastic increase of the internalization rate of the targeted polyplexes. To explore the tunability of our platform, surface density of targeting ligand was varied; our results indicated that the internalization rate varied with the ligand-to-polyplex ratio in a "switch mode" fashion. This work prefigures possible avenues for our coiled-coil platform in multiplex functionalization to address transient gene expression bottlenecks in recombinant protein production.
Collapse
Affiliation(s)
- Charles Fortier
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montreal, QC, Canada H3C 3A7
| | | | | |
Collapse
|
25
|
KITAJIMA T, TADA S, ITO Y. Creation of Binding Growth Factors and Their Applications. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Liberelle B, Boucher C, Chen J, Jolicoeur M, Durocher Y, De Crescenzo G. Impact of Epidermal Growth Factor Tethering Strategy on Cellular Response. Bioconjug Chem 2010; 21:2257-66. [DOI: 10.1021/bc1002604] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Benoît Liberelle
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Cyril Boucher
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Jingkui Chen
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Mario Jolicoeur
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Yves Durocher
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| |
Collapse
|
27
|
Liberelle B, Bartholin L, Boucher C, Murschel F, Jolicoeur M, Durocher Y, Merzouki A, De Crescenzo G. New ELISA approach based on coiled-coil interactions. J Immunol Methods 2010; 362:161-7. [PMID: 20869967 DOI: 10.1016/j.jim.2010.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/02/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
Abstract
The de novo designed heterodimeric E/K coiled-coil system has been previously demonstrated to be an excellent capture/dimerization system applicable to various needs in both biotechnology and pharmaceutical fields. Those include controlled protein dimerization, capture, purification and Western-blot detection. We here report the development of a new generation of ELISA test based on coiled-coil interactions for the direct quantitation of coil-tagged epidermal growth factor (EGF). The new approach was evaluated for its specificity, plate storability and reusability as well as for convenience when compared to commercially available systems. Our results show a similar affinity/sensitivity to standard capturing antibody-based ELISA systems and an improved affinity/sensitivity when compared to the commercially available Ni-NTA capture system. The E/K coiled-coil ELISA system was validated with respect to recovery, intra- and inter-assay variations. The practical working range was estimated to be between 5.2 and 34,000 pM. Furthermore, the storability and reusability of the plates was greater than the two aforementioned systems, suggesting that the E/K coiled-coil system is a good alternative to traditional tags such as poly-histidine for the development of ELISA tests aiming at quantitating coil-tagged proteins.
Collapse
Affiliation(s)
- Benoît Liberelle
- Department of Chemical Engineering, Bio-P2 Research Unit, Institute of Biomedical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales, Ecole Polytechnique de Montréal, PO BOX 6079, Station Centre-ville, Montréal (QC) Canada H3C 3A7
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
29
|
Boucher C, St-Laurent G, Jolicoeur M, Crescenzo GD, Durocher Y. Protein detection by Western blot via coiled-coil interactions. Anal Biochem 2009; 399:138-40. [PMID: 20005863 DOI: 10.1016/j.ab.2009.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/04/2009] [Accepted: 12/05/2009] [Indexed: 11/26/2022]
Abstract
We propose an approach for the detection of proteins by Western blot that takes advantage of the high-affinity interaction occurring between two de novo designed peptides, the E and K coils. As a model system, K coil-tagged epidermal growth factor (EGF) was revealed with secreted alkaline phosphatase (SeAP) tagged with E coil (SeAP-Ecoil) as well as with biotinylated E coil. In that respect, we first produced purified SeAP-Ecoil and verified its ability to interact with K coil peptides by surface plasmon resonance biosensing. We demonstrated that protein detection with Ecoil-biotin was more specific than with SeAP-Ecoil. We then showed that our approach is as sensitive as conventional detection strategies relying on nickel-nitrilotriacetic acid-horseradish peroxidase (Ni-NTA-HRP), anti-His-HRP, or anti-EGF. Altogether, our results indicate that the E/K coiled-coil system is a good alternative for protein detection by Western blot.
Collapse
Affiliation(s)
- Cyril Boucher
- Animal Cell Technology Group, Bioprocess Center, Biotechnology Research Institute, National Research Council Canada, Montréal, Quebec H4P 2R2, Canada
| | | | | | | | | |
Collapse
|
30
|
Boucher C, Liberelle B, Jolicoeur M, Durocher Y, De Crescenzo G. Epidermal Growth Factor Tethered through Coiled-Coil Interactions Induces Cell Surface Receptor Phosphorylation. Bioconjug Chem 2009; 20:1569-77. [DOI: 10.1021/bc9001147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyril Boucher
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Benoît Liberelle
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Mario Jolicoeur
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Yves Durocher
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologie Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal (Qc), Canada H3C 3A7, and Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council Canada, Montréal (Qc), Canada H4P 2R2
| |
Collapse
|
31
|
De Crescenzo G, Boucher C, Durocher Y, Jolicoeur M. Kinetic Characterization by Surface Plasmon Resonance-Based Biosensors: Principle and Emerging Trends. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0035-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|