1
|
Yoshizato H, Morimoto T, Nonaka T, Otani K, Kobayashi T, Nakashima T, Hirata H, Tsukamoto M, Mawatari M. Animal Model for Anterior Lumbar Interbody Fusion: A Literature Review. Spine Surg Relat Res 2024; 8:373-382. [PMID: 39131411 PMCID: PMC11310536 DOI: 10.22603/ssrr.2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 08/13/2024] Open
Abstract
Lumbar interbody fusion (LIF) is a surgical procedure for treating lumbar spinal stenosis and deformities. It removes a spinal disc and insert a cage or bone graft to promote solid fusion. Extensive research on LIF has been supported by numerous animal studies, which are being developed to enhance fusion rates and reduce the complications associated with the procedure. In particular, the anterior approach is significant in LIF research and regenerative medicine studies concerning intervertebral discs, as it utilizes the disc and the entire vertebral body. Several animal models have been used for anterior LIF (ALIF), each with distinct characteristics. However, a comprehensive review of ALIF models in different animals is currently lacking. Medium-sized and large animals, such as dogs and sheep, have been employed as ALIF models because of their suitable spine size for surgery. Conversely, small animals, such as rats, are rarely employed as ALIF models because of anatomical challenges. However, recent advancements in surgical implants and techniques have gradually allowed rats in ALIF models. Ambitious studies utilizing small animal ALIF models will soon be conducted. This review aims to review the advantages and disadvantages of various animal models, commonly used approaches, and bone fusion rate, to provide valuable insights to researchers studying the spine.
Collapse
Affiliation(s)
- Hiromu Yoshizato
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Otani
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Takema Nakashima
- Department of Orthopaedic Surgery, JCHO Saga Central Hospital, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
2
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
GDF11 Is a Novel Protective Factor Against Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:852-860. [PMID: 36027600 DOI: 10.1097/fjc.0000000000001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification (VC) occurs via an active cell-mediated process, which involves osteogenic differentiation, apoptosis, and phenotypic transformation of vascular smooth muscle cells (VSMCs). As a member of the transforming growth factor-β family, growth differentiation factor 11 (GDF11) can inhibit apoptosis and osteogenic differentiation and maintain the stability of atherosclerotic plaques. In this study, coronary artery calcium score (CACS) of participants with GDF11 measurements was measured using computed tomography angiography and was scored according to the Agatston score. β-glycerophosphate (10 mM), dexamethasone (100 nM), and l -ascorbic acid (50 µg/mL) [osteogenic medium (OM)] were used to induce calcification of human aortic smooth muscle cells. We found that CACS was negatively correlated with serum GDF11 levels in patients and GDF11 was a strong predictor of elevated CACS (OR = 0.967, 95% CI: 0.945-0.991; P = 0.006), followed by age (OR = 1.151, 95% CI: 1.029-1.286; P = 0.014), triglycerides (OR = 4.743, 95% CI: 1.170-19.236; P = 0.029), C-reactive protein (OR = 1.230, 95% CI: 1.010-1.498; P = 0.04), and hypertension (OR = 7.264, 95% CI: 1.099-48.002; P = 0.04). Furthermore, exogenous GDF11 inhibited OM-induced calcification by inhibiting osteogenic differentiation, the phenotypic transformation and apoptosis of human aortic smooth muscle cells. Our study demonstrates that GDF11 plays a crucial role in reducing vascular calcification and serves as a potential intervention target to vascular calcification.
Collapse
|
4
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
5
|
Hu T, Liu L, Lam RWM, Toh SY, Abbah SA, Wang M, Ramruttun AK, Bhakoo K, Cool S, Li J, Cho-Hong Goh J, Wong HK. Bone marrow mesenchymal stem cells with low dose bone morphogenetic protein 2 enhances scaffold-based spinal fusion in a porcine model. J Tissue Eng Regen Med 2021; 16:63-75. [PMID: 34687157 DOI: 10.1002/term.3260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
High doses bone morphogenetic protein 2 (BMP-2) have resulted in a series of complications in spinal fusion. We previously established a polyelectrolyte complex (PEC) carrier system that reduces the therapeutic dose of BMP-2 in both rodent and porcine spinal fusion models. This study aimed to evaluate the safety and efficacy of the combination of bone marrow mesenchymal stem cells (BMSCs) and low dose BMP-2 delivered by PEC for bone regeneration in a porcine model of anterior lumbar interbody spinal fusion (ALIF) application. Six Yorkshire pigs underwent a tri-segmental (L2/L3; L3/L4; L4/L5) ALIF in four groups, namely: (a) BMSCs + 25 μg BMP-2/PEC (n = 9), (b) 25 μg BMP-2/PEC (n = 3), (c) BMSCs (n = 3), and (d) 50 μg BMP-2/absorbable collagen sponge (n = 3). Fusion outcomes were evaluated by radiography, biomechanical testing, and histological analysis after 12 weeks. Mean radiographic scores at 12 weeks were 2.7, 2.0, 1.0, and 1.0 for Groups 1 to 4, respectively. μ-CT scanning, biomechanical evaluation, and histological analysis demonstrated solid fusion and successful bone regeneration in Group 1. In contrast, Group 2 showed inferior quality and slow rate of fusion, and Groups 3 and 4 failed to fuse any of the interbody spaces. There was no obvious evidence of seroma formation, implant rejection, or any other complications in all groups. The results suggest that the combination of BMSCs and low dose BMP-2/PEC could further lower down the effective dose of the BMP-2 and be used as a bone graft substitute in the large animal ALIF model.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Ling Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sunny Akogwu Abbah
- Department of Obstetrics and Gynaecology, Portiuncula University Hospital Ballinasloe, Galway, Ireland.,CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Kumarsing Ramruttun
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Simon Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Programme (NUSTEP), Life Sciences Institute, Singapore, Singapore
| |
Collapse
|
6
|
Krticka M, Planka L, Vojtova L, Nekuda V, Stastny P, Sedlacek R, Brinek A, Kavkova M, Gopfert E, Hedvicakova V, Rampichova M, Kren L, Liskova K, Ira D, Dorazilová J, Suchy T, Zikmund T, Kaiser J, Stary D, Faldyna M, Trunec M. Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines 2021; 9:733. [PMID: 34202232 PMCID: PMC8301420 DOI: 10.3390/biomedicines9070733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.
Collapse
Affiliation(s)
- Milan Krticka
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Ladislav Planka
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Lucy Vojtova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Vladimir Nekuda
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Premysl Stastny
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Radek Sedlacek
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague, Czech Republic;
| | - Adam Brinek
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Eduard Gopfert
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Vera Hedvicakova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michala Rampichova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Leos Kren
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Kvetoslava Liskova
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Daniel Ira
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Jana Dorazilová
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, 182 09 Prague, Czech Republic;
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - David Stary
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Martin Faldyna
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Martin Trunec
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| |
Collapse
|
7
|
Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC. Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. J Tissue Eng Regen Med 2020; 14:1465-1475. [PMID: 32750216 DOI: 10.1002/term.3111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spinal fusion (SF) surgery relies on medical hardware such as screws, cages and rods, complemented by bone graft or substitute, to stabilize the interventioned spine and achieve adequate bone ingrowth. SF is technically demanding, lengthy and expensive. Advances in material science and processing technologies, proposed herein, allowed the development of an adhesive polymeric foam with the potential to dismiss the need for invasive hardware in SF. Herein, 3D foams of polycaprolactone doped with polydopamine and polymethacrylic acid (PCL pDA pMAA) were created. For immediate bone stabilization, in situ hardening of the foam is required; therefore, a portable high-pressure device was developed to allow CO2 foaming within bone defects. Foams were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Adhesive properties of PCL pDA pMAA outperformed PCL when tested using glass surfaces (p < 0.001) or spinal plugs (p < 0.05). No cytotoxicity was observed, and bioactivity was confirmed by the CaP layer formed upon 7 days immersion in simulated body fluid. As proof of concept, PCL pDA pMAA was extruded in-between ex vivo porcine vertebrae, and micro-computed tomography revealed similar properties to those of trabecular bone. This novel system presents great promise for instrumentation-free interbody fusion.
Collapse
Affiliation(s)
- Rui M Duarte
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Orthopedic Surgery Department, Hospital de Braga, Sete Fontes-São Victor, Braga, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L Reis
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ana Rita C Duarte
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| |
Collapse
|
8
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Maruyama M, Nabeshima A, Pan CC, Behn AW, Thio T, Lin T, Pajarinen J, Kawai T, Takagi M, Goodman SB, Yang YP. The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis. Biomaterials 2018; 187:39-46. [PMID: 30292940 PMCID: PMC6193256 DOI: 10.1016/j.biomaterials.2018.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating disease that may progress to femoral head collapse and subsequently, degenerative arthritis. Although injection of bone marrow-derived mononuclear cells (BMMCs) is often performed with core decompression (CD) in the early stage of ONFH, these treatments are not always effective in prevention of disease progression and femoral head collapse. We previously described a novel 3D printed, customized functionally-graded scaffold (FGS) that improved bone growth in the femoral head after CD in a normal healthy rabbit, by providing structural and mechanical guidance. The present study demonstrates similar results of the FGS in a rabbit steroid-induced osteonecrosis model. Furthermore, the injection of BMMCs into the CD decreased the osteonecrotic area in the femoral head. Thus, the combination of FGS and BMMC provides a new therapy modality that may improve the outcome of CD for early stage of ONFH by providing both enhanced biological and biomechanical cues to promote bone regeneration in the osteonecrotic area.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Mechanical Engineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony W Behn
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Thio
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Toshiyuki Kawai
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA; Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Buser Z, Chung AS, Abedi A, Wang JC. The future of disc surgery and regeneration. INTERNATIONAL ORTHOPAEDICS 2018; 43:995-1002. [PMID: 30506089 DOI: 10.1007/s00264-018-4254-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/25/2018] [Indexed: 12/21/2022]
Abstract
Low back and neck pain are among the top contributors for years lived with disability, causing patients to seek substantial non-operative and operative care. Intervertebral disc herniation is one of the most common spinal pathologies leading to low back pain. Patient comorbidities and other risk factors contribute to the onset and magnitude of disc herniation. Spine fusions have been the treatment of choice for disc herniation, due to the conflicting evidence on conservative treatments. However, re-operation and costs have been among the main challenges. Novel technologies including cage surface modifications, biologics, and 3D printing hold a great promise. Artificial disc replacement has demonstrated reduced rates of adjacent segment degeneration, need for additional surgery, and better outcomes. Non-invasive biological approaches are focused on cell-based therapies, with data primarily from preclinical settings. High-quality comparative studies are needed to evaluate the efficacy and safety of novel technologies and biological therapies.
Collapse
Affiliation(s)
- Zorica Buser
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA.
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St, HC4 - #5400A, Los Angeles, CA, 90033, USA.
| | | | - Aidin Abedi
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Le BQ, Rai B, Hui Lim ZX, Tan TC, Lin T, Lin Lee JJ, Murali S, Teoh SH, Nurcombe V, Cool SM. A polycaprolactone-β-tricalcium phosphate-heparan sulphate device for cranioplasty. J Craniomaxillofac Surg 2018; 47:341-348. [PMID: 30579746 DOI: 10.1016/j.jcms.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cranioplasty is a surgical procedure used to treat a bone defect or deformity in the skull. To date, there is little consensus on the standard-of-care for graft materials used in such a procedure. Graft materials must have sufficient mechanical strength to protect the underlying brain as well as the ability to integrate and support new bone growth. Also, the ideal graft material should be individually customized to the contours of the defect to ensure a suitable aesthetic outcome for the patient. PURPOSE Customized 3D-printed scaffolds comprising of polycaprolactone-β-tricalcium phosphate (PCL-TCP) have been developed with mechanical properties suitable for cranioplasty. Osteostimulation of PCL-TCP was enhanced through the addition of a bone matrix-mimicking heparan sulphate glycosaminoglycan (HS3) with increased affinity for bone morphogenetic protein-2 (BMP-2). Efficacy of this PCL-TCP/HS3 combination device was assessed in a rat critical-sized calvarial defect model. METHOD Critical-sized defects (5 mm) were created in both parietal bones of 19 Sprague Dawley rats (Male, 450-550 g). Each cranial defect was randomly assigned to 1 of 4 treatment groups: (1) A control group consisting of PCL-TCP/Fibrin alone (n = 5); (2) PCL-TCP/Fibrin-HSft (30 μg) (n = 6) (HSft is the flow-through during HS3 isolation that has reduced affinity for BMP-2); (3) PCL-TCP/Fibrin-HS3 (5 μg) (n = 6); (4) PCL-TCP/Fibrin-HS3 (30 μg) (n = 6). Scaffold integration and bone formation was evaluated 12-weeks post implantation by μCT and histology. RESULTS Treatment with PCL-TCP/Fibrin alone (control) resulted in 23.7% ± 1.55% (BV/TV) of the calvarial defect being filled with new bone, a result similar to treatment with PCL-TCP/Fibrin scaffolds containing either HSft or HS3 (5 μg). At increased amounts of HS3 (30 μg), enhanced bone formation was evident (BV/TV = 38.6% ± 9.38%), a result 1.6-fold higher than control. Further assessment by 2D μCT and histology confirmed the presence of enhanced bone formation and scaffold integration with surrounding host bone only when scaffolds contained sufficient bone matrix-mimicking HS3. CONCLUSION Enhancing the biomimicry of devices using a heparan sulphate with increased affinity to BMP-2 can serve to improve the performance of PCL-TCP scaffolds and provides a suitable treatment for cranioplasty.
Collapse
Affiliation(s)
- Bach Quang Le
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Bina Rai
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Zophia Xue Hui Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Tuan Chun Tan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Tingxuan Lin
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Jaslyn Jie Lin Lee
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Sadasivam Murali
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Swee Hin Teoh
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 62 Nanyang Drive, 637459, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648
| | - Simon McKenzie Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288.
| |
Collapse
|
12
|
Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC. Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
14
|
Rubessa M, Polkoff K, Bionaz M, Monaco E, Milner DJ, Holllister SJ, Goldwasser MS, Wheeler MB. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration. Anim Biotechnol 2017; 28:275-287. [PMID: 28267421 DOI: 10.1080/10495398.2017.1279169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.
Collapse
Key Words
- ASC, adipose-derived stem cells
- BMP, bone morphogenetic protein
- BMSC, bone marrow mesenchymal stem cells
- Bone
- DEG, differentially expressed genes
- FDR, false-discovery rate
- HA, hydroxyapatite
- HA/TCP, hydroxyapatite/tricalcium phosphate
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cells
- ONFH, osteonecrosis of the femoral head
- PCL, Poly (ϵ-caprolactone)
- PEG, polyethylene glycol
- PLGA, polylactic-coglycolic acid
- TCP, beta tri-calcium phosphate
- USSC, unrestricted somatic stem cell
- scaffolds
- stem cells
- swine
- tissue engineering
Collapse
Affiliation(s)
- Marcello Rubessa
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn Polkoff
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Elisa Monaco
- b Oregon State University , Corvallis , Oregon , USA
| | - Derek J Milner
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Michael S Goldwasser
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,d New Hanover Regional Medical Center , Wilmington , North Carolina , USA
| | - Matthew B Wheeler
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| |
Collapse
|
15
|
Abbasi H, Abbasi A. Minimally Invasive Direct Thoracic Interbody Fusion (MIS-DTIF): Technical Notes of a Single Surgeon Study. Cureus 2016; 8:e699. [PMID: 27570718 PMCID: PMC4996542 DOI: 10.7759/cureus.699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Minimally invasive direct thoracic interbody fusion (MIS-DTIF) is a new single surgeon procedure for fusion of the thoracic vertebrae below the scapula (T6/7) to the thoracolumbar junction. In this proof of concept study, we describe the surgical technique for MIS-DTIF and report our experience and the perioperative outcomes of the first four patients who underwent this procedure. Study design/setting In this study we attempt to establish the safety and efficacy of MIS-DTIF. We have performed MIS-DTIF on six spinal levels in four patients with degenerative disk disease or disk herniation. We recorded surgery time, blood loss, fluoroscopy time, complications, and patient-reported pain. Methods Throughout the MIS-DTIF procedure, the surgeon is aided by biplanar fluoroscopic imaging and electrophysiological monitoring. The surgeon approaches the spine with a series of gentle tissue dilations and inserts a working tube that establishes a direct connection from the outside of the skin to the disk space. Through this working tube, the surgeon performs a discectomy and inserts an interbody graft or cage. The procedure is completed with minimally invasive (MI) posterior pedicle screw fixation. Results For the single level patients the mean blood loss was 90 ml, surgery time 43 minutes, fluoroscopy time 293 seconds, and hospital stay two days. For the two-level surgeries, the mean blood loss was 27 ml, surgery time 61 minutes, fluoroscopy time 321 seconds, and hospital stay three days. We did not encounter any clinically significant complications. Thirty days post-surgery, the patients reported a statistically significant reduction of 5.3 points on a 10-point sliding pain scale. Conclusions MIS-DTIF with pedicle screw fixation is a safe and clinically effective procedure for fusions of the thoracic spine. The procedure is technically straightforward and overcomes many of the limitations of the current minimally invasive (MI) approaches to the thoracic spine. MIS-DTIF has the potential to improve patient outcomes and reduce costs relative to the current standard of care. We are currently expanding this study to a larger cohort and recording long term outcomes and costs.
Collapse
Affiliation(s)
| | - Ali Abbasi
- Trinity College, University of Cambridge
| |
Collapse
|
16
|
Evaluation of Anterior Vertebral Interbody Fusion Using Osteogenic Mesenchymal Stem Cells Transplanted in Collagen Sponge. Clin Spine Surg 2016; 29:E201-7. [PMID: 22576723 DOI: 10.1097/bsd.0b013e31825ca123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
STUDY DESIGN The study used a rabbit model to achieve anterior vertebral interbody fusion using osteogenic mesenchymal stem cells (OMSCs) transplanted in collagen sponge. OBJECTIVE We investigated the effectiveness of graft material for anterior vertebral interbody fusion using a rabbit model by examining the OMSCs transplanted in collagen sponge. SUMMARY OF BACKGROUND DATA Anterior vertebral interbody fusion is commonly performed. Although autogenous bone graft remains the gold-standard fusion material, it requires a separate surgical procedure and is associated with significant short-term and long-term morbidity. Recently, mesenchymal stem cells from bone marrow have been studied in various fields, including posterolateral spinal fusion. Thus, we hypothesized that cultured OMSCs transplanted in porous collagen sponge could be used successfully even in anterior vertebral interbody fusion. METHODS Forty mature male White Zealand rabbits (weight, 3.5-4.5 kg) were randomly allocated to receive one of the following graft materials: porous collagen sponge plus cultured OMSCs (group I); porous collagen sponge alone (group II); autogenous bone graft (group III); and nothing (group IV). All animals underwent anterior vertebral interbody fusion at the L4/L5 level. The lumbar spine was harvested en bloc, and the new bone formation and spinal fusion was evaluated using radiographic analysis, microcomputed tomography, manual palpation test, and histologic examination at 8 and 12 weeks after surgery. RESULTS New bone formation and bony fusion was evident as early as 8 weeks in groups I and III. And there was no statistically significant difference between 8 and 12 weeks. At both time points, by microcomputed tomography and histologic analysis, new bone formation was observed in both groups I and III, fibrous tissue was observed and there was no new bone in both groups II and IV; by manual palpation test, bony fusion was observed in 40% (4/10) of rabbits in group I, 70% (7/10) of rabbits in group III, and 0% (0/10) of rabbits in both groups II and IV. CONCLUSIONS These findings suggest that mesenchymal stem cells that have been cultured with osteogenic differentiation medium and loaded with collagen sponge could induce bone formation and anterior vertebral interbody fusion. And the rabbit model we developed will be useful in evaluating the effects of graft materials for anterior vertebral interbody fusion. Further study is needed to determine the most appropriate carrier for OMSCs and the feasibility in the clinical setting.
Collapse
|
17
|
Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1103241] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Hu T, Abbah SA, Toh SY, Wang M, Lam RWM, Naidu M, Bhakta G, Cool SM, Bhakoo K, Li J, Goh JCH, Wong HK. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats. Spine J 2015; 15:2552-63. [PMID: 26342750 DOI: 10.1016/j.spinee.2015.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/15/2015] [Accepted: 08/22/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects. PURPOSE We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion. STUDY DESIGN/SETTING A prospective study using a rodent model of posterolateral spinal fusion was carried out. PATIENT SAMPLE Thirty-six syngeneic Fischer rats comprised the patient sample. METHODS Six groups of implants were evaluated as follows (n=6): (1) 10 µg BMP-2 with undifferentiated BMSCs; (2) 10 µg BMP-2 with osteogenic-differentiated BMSCs; (3) 2.5 µg BMP-2 with undifferentiated BMSCs; (4) 2.5 µg BMP-2 with osteogenic-differentiated BMSCs; (5) 0.5 µg BMP-2 with undifferentiated BMSCs; and (6) 0.5 µg BMP-2 with osteogenic-differentiated BMSCs. Optimal in vitro osteogenic differentiation of BMSCs was determined by quantitative real-time polymerase chain reaction (qRT-PCR) gene analysis whereas in vivo bone formation capacity was evaluated by manual palpation, micro-computed tomography, and histology. RESULTS Rat BMSCs cultured in fibrin matrix that was loaded into the pores of medical-grade poly epsilon caprolactone tricalcium phosphate scaffolds differentiated toward osteogenic lineage by expressing osterix, runt-related transcription factor 2, and osteocalcium mRNA when supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate. Whereas qRT-PCR revealed optimal increase in osteogenic genes expression after 7 days of in vitro culture, in vivo transplantation study showed that pre-differentiation of BMSCs before transplantation failed to promote posterolateral spinal fusion when co-delivered with low-dose BMP-2 (1/6 or 17% fusion rate). In contrast, combined delivery of undifferentiated BMSCs with low-dose BMP-2 (2.5 µg) demonstrated significantly higher fusion rate (4/6 or 67%) as well as significantly increased volume of new bone formation (p<.05). CONCLUSION In summary, this study supports the combination of undifferentiated BMSCs and low-dose rhBMP-2 for bone tissue engineering construct.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Sunny Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Mathanapriya Naidu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Gajadhar Bhakta
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Kishore Bhakoo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, 138667, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - James Cho-Hong Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore.
| |
Collapse
|
19
|
Abbah SA, Delgado LM, Azeem A, Fuller K, Shologu N, Keeney M, Biggs MJ, Pandit A, Zeugolis DI. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering. Adv Healthc Mater 2015; 4:2488-99. [PMID: 26667589 DOI: 10.1002/adhm.201500004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Indexed: 12/14/2022]
Abstract
Cells within a tissue are able to perceive, interpret and respond to the biophysical, biomechanical, and biochemical properties of the 3D extracellular matrix environment in which they reside. Such stimuli regulate cell adhesion, metabolic state, proliferation, migration, fate and lineage commitment, and ultimately, tissue morphogenesis and function. Current scaffold fabrication strategies in musculoskeletal tissue engineering seek to mimic the sophistication and comprehensiveness of nature to develop hierarchically assembled 3D implantable devices of different geometric dimensions (nano- to macrometric scales) that will offer control over cellular functions and ultimately achieve functional regeneration. Herein, advances and shortfalls of bottom-up (self-assembly, freeze-drying, rapid prototype, electrospinning) and top-down (imprinting) scaffold fabrication approaches, specific to musculoskeletal tissue engineering, are discussed and critically assessed.
Collapse
Affiliation(s)
- Sunny A. Abbah
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Luis M. Delgado
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Ayesha Azeem
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Kieran Fuller
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Michael Keeney
- Department of Orthopaedic Surgery; Stanford School of Medicine; Stanford University CA USA
| | - Manus J. Biggs
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
- Centre for Research in Medical Devices (CURAM); Biosciences Research Building; National University of Ireland Galway (NUI Galway); Galway Ireland
| |
Collapse
|
20
|
Liu X, Wei D, Zhong J, Ma M, Zhou J, Peng X, Ye Y, Sun G, He D. Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: in Vitro and in Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18540-18552. [PMID: 26258872 DOI: 10.1021/acsami.5b04868] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spinal surgeon community has expressed significant interest in applying calcium phosphate cement (CPC) for the treatment of vertebral compression fractures (VCFs) and minimizing its disadvantages, such as its water-induced collapsibility and poor mechanical properties, limiting its clinical use. In this work, novel biodegradable electrospun nanofibrous poly(d,l-lactic acid-ϵ-caprolactone) balloons (ENPBs) were prepared, and the separation, pressure, degradation, and new bone formation behaviors of the ENPBs when used as CPC-filled containers in vitro and in vivo were systematically analyzed and compared. CPC could be separated from surrounding bone tissues by ENPBs in vitro and in vivo. ENPB-CPCs (ENPBs serving as CPC-filled containers) exerted pressure on the surrounding bone microenvironment, which was enough to crush trabecular bone. Compared with the CPC implantation, ENPB-CPCs delayed the degradation of CPC (i.e., its water-induced collapsilibity). Finally, possible mechanisms behind the in vivo effects caused by ENPB-CPCs implanted into rabbit thighbones and pig vertebrae were proposed. This work suggests that ENPBs can be potentially applied as CPC-filled containers in vivo and provides an experimental basis for the clinical application of ENPBs for the treatment of VCFs. In addition, this work will be of benefit to the development of polymer-based medical implants in the future.
Collapse
Affiliation(s)
- Xunwei Liu
- Department of Medical Imaging, Jinan Military General Hospital , No. 25 Shifan Road, Jinan 200050, Shandong Province, People's Republic of China
| | - Daixu Wei
- National Engineering Research Center for Nanotechnology , No. 28 East Jiangchuang Road, Minhang District, Shanghai 200241, People's Republic of China
| | - Jian Zhong
- National Engineering Research Center for Nanotechnology , No. 28 East Jiangchuang Road, Minhang District, Shanghai 200241, People's Republic of China
| | - Mengjia Ma
- School of Materials Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuang Road, Minhang District, Shanghai 200240, People's Republic of China
| | - Juan Zhou
- National Engineering Research Center for Nanotechnology , No. 28 East Jiangchuang Road, Minhang District, Shanghai 200241, People's Republic of China
| | - Xiangtao Peng
- Department of Medical Imaging, Jinan Military General Hospital , No. 25 Shifan Road, Jinan 200050, Shandong Province, People's Republic of China
| | - Yong Ye
- Department of Medical Imaging, Jinan Military General Hospital , No. 25 Shifan Road, Jinan 200050, Shandong Province, People's Republic of China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital , No. 25 Shifan Road, Jinan 200050, Shandong Province, People's Republic of China
| | - Dannong He
- National Engineering Research Center for Nanotechnology , No. 28 East Jiangchuang Road, Minhang District, Shanghai 200241, People's Republic of China
- School of Materials Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuang Road, Minhang District, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Polyelectrolyte Complex Carrier Enhances Therapeutic Efficiency and Safety Profile of Bone Morphogenetic Protein-2 in Porcine Lumbar Interbody Fusion Model. Spine (Phila Pa 1976) 2015; 40:964-73. [PMID: 25893351 DOI: 10.1097/brs.0000000000000935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Porcine lumbar interbody fusion model. OBJECTIVE This study evaluates the effect of polyelectrolyte complex (PEC) carrier in enhancing the therapeutic efficiency and safety profile of bone morphogenetic protein-2 (BMP-2) in a large animal model. SUMMARY OF BACKGROUND DATA Extremely large amounts of BMP-2 are administered to achieve consistent spinal fusion, which has led to complications. Heparin-modified PEC carrying reduced BMP-2 doses of 0.5 μg was demonstrated to achieve consistent spinal fusion with reduction of complications in rodent model. The purpose of this study was to evaluate whether PEC could improve the therapeutic efficiency of BMP-2 in porcine model. METHODS Three-segment (L3-L6) anterior lumbar interbody fusions with instrumentation were performed on 6 pigs using 3 different doses of BMP-2, namely, (1) 50 μg, (2) 150 μg, and (3) 300 μg. The BMP-2 was delivered using heparin-modified alginate microbeads loaded into biodegradable cage. Fusion performance was evaluated after 3 months. RESULTS Manual palpation and micro-computed tomography showed consistent fusion in all experimental groups. Heterotopic bone formation beyond the cage implant area was more evident in group 2 and group 3 than in group 1. Similarly, superior bone microstructure was observed in the new bone with the lowered BMP-2 dose. Biomechanical evaluation revealed enhanced stiffness of the operated segments compared with nonoperated segments (P < 0.05). Mechanical stability was maintained despite dose reduction of BMP-2. Although the mineral apposition rate was higher in group 3, unsatisfactory bony microstructure with decreased trabecular number was observed in group 3 compared with group 1. CONCLUSION PEC carrying low doses of BMP-2 achieved consistent interbody fusion. We observed dose-related reduction in heterotopic ossification without compromising the stability of the fused segments. PEC carrier reduces the efficacious doses of BMP-2. This could enhance the safety profile of BMP-2 and reduce dose- and carrier-related complications. LEVEL OF EVIDENCE N/A.
Collapse
|
22
|
Novel Protamine-Based Polyelectrolyte Carrier Enhances Low-Dose rhBMP-2 in Posterolateral Spinal Fusion. Spine (Phila Pa 1976) 2015; 40:613-21. [PMID: 25705961 DOI: 10.1097/brs.0000000000000841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A rodent posterolateral spinal fusion model. OBJECTIVE This study evaluated a protamine-based polyelectrolyte complex (PEC) developed to use heparin in enhancing the biological activity of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion. SUMMARY OF BACKGROUND DATA rhBMP-2 is commonly regarded as the most potent bone-inducing molecule. However, poor pharmacokinetics and short in vivo half-life means that large amounts of the bioactive growth factor are required for consistent clinical outcomes. This has been associated with a number of adverse tissue reactions including seroma and heterotopic ossification. Glycosaminoglycans including heparin are known to stabilize rhBMP-2 bioactivity. Previous studies with poly-L-lysine (PLL) and heparin-based PEC carriers amplified the therapeutic efficacy of low-dose BMP-2. However, questions remained on the eventual clinical applicability of relatively cytotoxic PLL. In the present study, a protamine-based PEC carrier was designed to further enhance the safety and efficacy of BMP-2 by delivering lower dose within the therapeutic window. METHODS A polyelectrolyte shell was deposited on the surface of alginate microbead templates using the polycation (protamine)/polyanion (heparin) layer-by-layer polyelectrolyte self-assembly protocol. rhBMP-2 was loaded onto the outermost layer via heparin affinity binding. Loading and release of rhBMP-2 were evaluated in vitro. The bone-inductive ability of 20-fold reduction of rhBMP-2 with the different carrier vehicle was evaluated using a posterolateral spinal fusion model in rats. RESULTS In vitro uptake and release analysis, protamine-based PEC showed higher uptake and significantly enhanced control release than PLL-based PEC (P < 0.05). In vivo implantation with protamine-based and PLL-based PEC showed better fusion performances than absorbable collagen sponge-delivered same dose of rhBMP-2, and negative control group through manual palpation, micro-computed tomography, and histological analyses. CONCLUSION Solid posterolateral spinal fusion was achieved with 20-fold reduction of rhBMP-2 when delivered using protamine-based PEC carrier in the rat posterolateral spinal fusion model. LEVEL OF EVIDENCE N/A.
Collapse
|
23
|
Cuenca-López MD, Andrades JA, Gómez S, Zamora-Navas P, Guerado E, Rubio N, Blanco J, Becerra J. Evaluation of posterolateral lumbar fusion in sheep using mineral scaffolds seeded with cultured bone marrow cells. Int J Mol Sci 2014; 15:23359-76. [PMID: 25522168 PMCID: PMC4284771 DOI: 10.3390/ijms151223359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/25/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by bioluminescence imaging (BLI). Although the cultured MSCs had osteogenic potential, their contribution to spinal fusion when seeded in mineral scaffolds, in the conditions disclosed here, remains uncertain probably due to callus interference with the scaffolds. At present, bone autografts are better than hybrid constructs for posterolateral lumbar fusion, but we should continue to seek better conditions for efficient tissue engineering.
Collapse
Affiliation(s)
- María D Cuenca-López
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Santiago Gómez
- Department of Pathological Anatomy, Faculty of Medicine, University of Cádiz, Cádiz 11003, Spain.
| | - Plácido Zamora-Navas
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Enrique Guerado
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Nuria Rubio
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Jerónimo Blanco
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
24
|
Abbah SA, Lam WMR, Hu T, Goh J, Wong HK. Sequestration of rhBMP-2 into self-assembled polyelectrolyte complexes promotes anatomic localization of new bone in a porcine model of spinal reconstructive surgery. Tissue Eng Part A 2014; 20:1679-88. [PMID: 24354664 DOI: 10.1089/ten.tea.2013.0593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient and therapeutically safe delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) continues to be a central issue in bone tissue engineering. Recent evidence indicates that layer-by-layer self-assembly of polyelectrolyte complexes (PECs) can be used to recreate synthetic matrix environments that would act as tuneable reservoirs for delicate biomolecules and cells. Although preliminary in vitro as well as small-animal in vivo studies support this premise, translation into clinically relevant bone defect volumes in larger animal models remains unreported. Here we explored the use of native heparin-based PEC, deposited on a hydrated alginate gel template, to load bioactive rhBMP-2 and to facilitate lumbar interbody spinal fusion in pigs. We observed that triple PEC deposits with the highest protein sequestration efficiency and immobilization capacity promoted higher volume of new bone formation when compared with single PEC with low sequestration efficiency and immobilization capacity. This also resulted in a significantly enhanced biomechanical stability of the fused spinal segment when compared with PEC carriers with relatively low protein sequestration and immobilization capacities (p<0.05). Most importantly, PEC carriers showed a more orderly pattern of new bone deposition and superior containment of bone tissue within implant site when compared to collagen sponge carriers. We conclude that this growth factor sequestration platform is effective in the healing of clinically relevant bone defect volume and could overcome some of the safety concerns and limitations currently associated with rhBMP-2 therapy such as excessive heterotopic ossification.
Collapse
Affiliation(s)
- Sunny-Akogwu Abbah
- 1 Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | | | | | | | | |
Collapse
|
25
|
Abbah SA, Liu J, Goh JCH, Wong HK. Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2. Tissue Eng Part A 2012; 19:350-9. [PMID: 22894570 DOI: 10.1089/ten.tea.2012.0274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral implants. These findings are important because of complications with current rhBMP-2 delivery method, including excessive, uncontrolled bone formation.
Collapse
Affiliation(s)
- Sunny Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
26
|
Renth AN, Detamore MS. Leveraging "raw materials" as building blocks and bioactive signals in regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:341-62. [PMID: 22462759 PMCID: PMC3458620 DOI: 10.1089/ten.teb.2012.0080] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/28/2012] [Indexed: 01/15/2023]
Abstract
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of "raw materials" used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies.
Collapse
Affiliation(s)
- Amanda N. Renth
- Bioengineering Program, University of Kansas, Lawrence, Kansas
| | - Michael S. Detamore
- Bioengineering Program, University of Kansas, Lawrence, Kansas
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| |
Collapse
|
27
|
Beloti MM, Sicchieri LG, de Oliveira PT, Rosa AL. The Influence of Osteoblast Differentiation Stage on Bone Formation in Autogenously Implanted Cell-Based Poly(Lactide-Co-Glycolide) and Calcium Phosphate Constructs. Tissue Eng Part A 2012; 18:999-1005. [DOI: 10.1089/ten.tea.2011.0405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Marcio M. Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luciana G. Sicchieri
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Li D, Wang W, Guo R, Qi Y, Gou Z, Gao C. Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4914-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Hollister SJ, Murphy WL. Scaffold translation: barriers between concept and clinic. TISSUE ENGINEERING. PART B, REVIEWS 2011; 17:459-74. [PMID: 21902613 PMCID: PMC3223015 DOI: 10.1089/ten.teb.2011.0251] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/26/2011] [Indexed: 01/29/2023]
Abstract
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.
Collapse
Affiliation(s)
- Scott J Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|