1
|
Buonocore M, Grimaldi M, Santoro A, Covelli V, Marino C, Napolitano E, Novi S, Tecce MF, Ciaglia E, Montella F, Lopardo V, Perugini V, Santin M, D’Ursi AM. Exploiting the Features of Short Peptides to Recognize Specific Cell Surface Markers. Int J Mol Sci 2023; 24:15610. [PMID: 37958593 PMCID: PMC10650159 DOI: 10.3390/ijms242115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies are the macromolecules of choice to ensure specific recognition of biomarkers in biological assays. However, they present a range of shortfalls including a relatively high production cost and limited tissue penetration. Peptides are relatively small molecules able to reproduce sequences of highly specific paratopes and, although they have less biospecificity than antibodies, they offer advantages like ease of synthesis, modifications of their amino acid sequences and tagging with fluorophores and other molecules required for detection. This work presents a strategy to design peptide sequences able to recognize the CD44 hyaluronic acid receptor present in the plasmalemma of a range of cells including human bone marrow stromal mesenchymal cells. The protocol of identification of the optimal amino acid sequence was based on the combination of rational design and in silico methodologies. This protocol led to the identification of two peptide sequences which were synthesized and tested on human bone marrow mesenchymal stromal cells (hBM-MSCs) for their ability to ensure specific binding to the CD44 receptor. Of the two peptides, one binds CD44 with sensitivity and selectivity, thus proving its potential to be used as a suitable alternative to this antibody in conventional immunostaining. In the context of regenerative medicine, the availability of this peptide could be harnessed to functionalize tissue engineering scaffolds to anchor stem cells as well as to be integrated into systems such as cell sorters to efficiently isolate MSCs from biological samples including various cell subpopulations. The data here reported can represent a model for developing peptide sequences able to recognize hBM-MSCs and other types of cells and for their integration in a range of biomedical applications.
Collapse
Affiliation(s)
- Michela Buonocore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, 84084 Fisciano, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Sara Novi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| |
Collapse
|
2
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
3
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
4
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
5
|
Zhang X, He J, Wang W. Progress in the use of mesenchymal stromal cells for osteoarthritis treatment. Cytotherapy 2021; 23:459-470. [PMID: 33736933 DOI: 10.1016/j.jcyt.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/20/2020] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
LITERATURE REVIEW OF MSCS IN THE TREATMENT OF OSTEOARTHRITIS IN THE PAST FIVE YEARS: Osteoarthritis (OA) is one of the most common chronic joint diseases, with prominent symptoms caused by many factors. However, current medical interventions for OA have resulted in poor clinical outcomes, demonstrating that there are huge unmet medical needs in this area. Cell therapy has opened new avenues of OA treatment. Different sources of mesenchymal stromal cells (MSCs) may have different phenotypes and cellular functions. Pre-clinical and clinical studies have demonstrated the feasibility, safety and efficacy of MSC therapy. Mitogen-activated protein kinase, Wnt and Notch signaling pathways are involved in the chondrogenesis of MSC-mediated treatments. MSCs may also exert effective immunoregulatory and paracrine effects to stimulate tissue repair. Therapy with extracellular vesicles containing cytokines, which are secreted by MSCs, might be a potential treatment for OA.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiyin He
- Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wen Wang
- Clinical Development, IASO Biotherapeutics Co., Ltd., Shanghai, China.
| |
Collapse
|
6
|
Zha K, Yang Y, Tian G, Sun Z, Yang Z, Li X, Sui X, Liu S, Zhao J, Guo Q. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl Med 2021; 10:1008-1020. [PMID: 33586908 PMCID: PMC8235142 DOI: 10.1002/sctm.20-0290] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are promising for the treatment of degenerative diseases and traumatic injuries. However, MSC engraftment is not always successful and requires a strong comprehension of the cytokines and their receptors that mediate the biological behaviors of MSCs. The effects of nerve growth factor (NGF) and its two receptors, TrkA and p75NTR, on neural cells are well studied. Increasing evidence shows that NGF, TrkA, and p75NTR are also involved in various aspects of MSC function, including their survival, growth, differentiation, and angiogenesis. The regulatory effect of NGF on MSCs is thought to be achieved mainly through its binding to TrkA. p75NTR, another receptor of NGF, is regarded as a novel surface marker of MSCs. This review provides an overview of advances in understanding the roles of NGF and its receptors in MSCs as well as the effects of MSC‐derived NGF on other cell types, which will provide new insight for the optimization of MSC‐based therapy.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Yu Yang
- Department of Othopaedics, Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| | - Jinmin Zhao
- Department of Othopaedics, Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
7
|
Childs PG, Reid S, Salmeron-Sanchez M, Dalby MJ. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem J 2020; 477:3349-3366. [PMID: 32941644 PMCID: PMC7505558 DOI: 10.1042/bcj20190382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
Twenty-five years have passed since the first clinical trial utilising mesenchymal stomal/stem cells (MSCs) in 1995. In this time academic research has grown our understanding of MSC biochemistry and our ability to manipulate these cells in vitro using chemical, biomaterial, and mechanical methods. Research has been emboldened by the promise that MSCs can treat illness and repair damaged tissues through their capacity for immunomodulation and differentiation. Since 1995, 31 therapeutic products containing MSCs and/or progenitors have reached the market with the level of in vitro manipulation varying significantly. In this review, we summarise existing therapeutic products containing MSCs or mesenchymal progenitor cells and examine the challenges faced when developing new therapeutic products. Successful progression to clinical trial, and ultimately market, requires a thorough understanding of these hurdles at the earliest stages of in vitro pre-clinical development. It is beneficial to understand the health economic benefit for a new product and the reimbursement potential within various healthcare systems. Pre-clinical studies should be selected to demonstrate efficacy and safety for the specific clinical indication in humans, to avoid duplication of effort and minimise animal usage. Early consideration should also be given to manufacturing: how cell manipulation methods will integrate into highly controlled workflows and how they will be scaled up to produce clinically relevant quantities of cells. Finally, we summarise the main regulatory pathways for these clinical products, which can help shape early therapeutic design and testing.
Collapse
Affiliation(s)
- Peter G. Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Stuart Reid
- Centre for the Cellular Microenvironment, SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, U.K
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
8
|
Rodríguez-Pereira C, Lagunas A, Casanellas I, Vida Y, Pérez-Inestrosa E, Andrades JA, Becerra J, Samitier J, Blanco FJ, Magalhães J. RGD-Dendrimer-Poly(L-lactic) Acid Nanopatterned Substrates for the Early Chondrogenesis of Human Mesenchymal Stromal Cells Derived from Osteoarthritic and Healthy Donors. MATERIALS 2020; 13:ma13102247. [PMID: 32414175 PMCID: PMC7287591 DOI: 10.3390/ma13102247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine–glycine–aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10−9, 10−8, 2.5 × 10−8, and 10−2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II–COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1–GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns’ had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.
Collapse
Affiliation(s)
- Cristina Rodríguez-Pereira
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (C.R.-P.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
| | - Anna Lagunas
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ignasi Casanellas
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Yolanda Vida
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain; (Y.V.); (E.P.-I.)
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, C/Severo Ochoa, 35, 29590 Campanillas, 29590 Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Dpto. Química Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, 29071 Málaga, Spain; (Y.V.); (E.P.-I.)
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, C/Severo Ochoa, 35, 29590 Campanillas, 29590 Málaga, Spain
| | - José A. Andrades
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Cell Biology, Genetics and Physiology Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga (UMA), 29071 Málaga, Spain
| | - José Becerra
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), Parque Tecnológico de Andalucía, C/Severo Ochoa, 35, 29590 Campanillas, 29590 Málaga, Spain
- Cell Biology, Genetics and Physiology Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga (UMA), 29071 Málaga, Spain
| | - Josep Samitier
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Francisco J. Blanco
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (C.R.-P.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
- Departamento de Medicina, Facultad Ciencias de la Salud, Campus de Oza, Universidade da Coruña (UDC), Campus de Oza, 15006 A Coruña, Spain
| | - Joana Magalhães
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (C.R.-P.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (A.L.); (I.C.); (J.A.A.); (J.B.); (J.S.)
- Correspondence: ; Tel.: +34-981-176-413
| |
Collapse
|
9
|
Sangeetha KN, Vennila R, Secunda R, Sakthivel S, Pathak S, Jeswanth S, Surendran R. Functional variations between Mesenchymal Stem Cells of different tissue origins: A comparative gene expression profiling. Biotechnol Lett 2020; 42:1287-1304. [PMID: 32372268 DOI: 10.1007/s10529-020-02898-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mesenchymal Stem Cells (MSCs), regardless of the tissue sources, are considered as excellent candidates for cellular therapy as they are immune-privileged cells containing a multitude of therapeutic functions that aid in tissue regeneration and repair. For the effective application of these cells in cell therapy, it is important to understand and characterize their biological functions. OBJECTIVES The present study attempts to characterize the variations in multipotent function such as cell surface antigen levels, proliferation, differentiation and stemness (pluripotency) potential of MSCs isolated from foetal [wharton's jelly (WJ), foetal and maternal side of placenta (PF and PM)] and adult tissue sources [bone marrow (BM) and adipose tissue (AT)] using gene expression by real time PCR (qRT-PCR). RESULTS Amongst the different tissue sources, PM, PF and AT-MSCs exhibited significant increase (p < 0.001, p < 0.001 and p < 0.01 respectively) in CD 73 expression and therefore could have a role in immunomodulation. WJ-MSCs exhibited superior proliferation potential based on growth curve, PCNA and Wnt gene expression. BM-MSCs were superior in exhibiting trilineage differentiation. Enhanced stemness potential (Oct 4 and Nanog) was observed for both BM and WJ-MSCs. In addition, BM and WJ-MSCs expressed high levels of CD 90 making them suitable in bone repair and regeneration. CONCLUSION Thus to conclude, out of the five different sources tested, BM an adult source and WJ-MSCs a foetal source were superior in exhibiting most of the biological functions indicating that these sources may be suitable candidates for cell repair and regeneration studies.
Collapse
Affiliation(s)
- K N Sangeetha
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | | | - R Secunda
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India.
| | - S Sakthivel
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education, Chettinad Hospital & Research Institute, Chennai, Tamilnadu, India
| | - S Jeswanth
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - R Surendran
- Hepato-Pancreato-Biliary Centre for Surgery & Transplantation, MIOT International, Chennai, Tamilnadu, India
| |
Collapse
|
10
|
López-Senra E, Casal-Beiroa P, López-Álvarez M, Serra J, González P, Valcarcel J, Vázquez JA, Burguera EF, Blanco FJ, Magalhães J. Impact of Prevalence Ratios of Chondroitin Sulfate (CS)- 4 and -6 Isomers Derived from Marine Sources in Cell Proliferation and Chondrogenic Differentiation Processes. Mar Drugs 2020; 18:E94. [PMID: 32023805 PMCID: PMC7074435 DOI: 10.3390/md18020094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is the most prevalent rheumatic disease. During disease progression, differences have been described in the prevalence of chondroitin sulfate (CS) isomers. Marine derived-CS present a higher proportion of the 6S isomer, offering therapeutic potential. Accordingly, we evaluated the effect of exogenous supplementation of CS, derived from the small spotted catshark (Scyliorhinus canicula), blue shark (Prionace glauca), thornback skate (Raja clavata) and bovine CS (reference), on the proliferation of osteochondral cell lines (MG-63 and T/C-28a2) and the chondrogenic differentiation of mesenchymal stromal cells (MSCs). MG-G3 proliferation was comparable between R. clavata (CS-6 intermediate ratio) and bovine CS (CS-4 enrichment), for concentrations below 0.5 mg/mL, defined as a toxicity threshold. T/C-28a2 proliferation was significantly improved by intermediate ratios of CS-6 and -4 isomers (S. canicula and R. clavata). A dose-dependent response was observed for S. canicula (200 µg/mL vs 50 and 10 µg/mL) and bovine CS (200 and 100 µg/mL vs 10 µg/mL). CS sulfation patterns discretely affected MSCs chondrogenesis; even though S. canicula and R. clavata CS up-regulated chondrogenic markers expression (aggrecan and collagen type II) these were not statistically significant. We demonstrate that intermediate values of CS-4 and -6 isomers improve cell proliferation and offer potential for chondrogenic promotion, although more studies are needed to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Estefanía López-Senra
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (E.L.-S.); (M.L.-Á.); (J.S.); (P.G.)
| | - Paula Casal-Beiroa
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC. SERGAS. C/ As Xubias de Arriba 84, 15006 A Coruña, Spain; (P.C.-B.); (E.F.B.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
| | - Miriam López-Álvarez
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (E.L.-S.); (M.L.-Á.); (J.S.); (P.G.)
| | - Julia Serra
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (E.L.-S.); (M.L.-Á.); (J.S.); (P.G.)
| | - Pío González
- New Materials Group, Department of Applied Physics, University of Vigo, IISGS, MTI, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (E.L.-S.); (M.L.-Á.); (J.S.); (P.G.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - José Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Elena F. Burguera
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC. SERGAS. C/ As Xubias de Arriba 84, 15006 A Coruña, Spain; (P.C.-B.); (E.F.B.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC. SERGAS. C/ As Xubias de Arriba 84, 15006 A Coruña, Spain; (P.C.-B.); (E.F.B.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
- Departamento de Medicina, Facultad Ciencias de la Salud, Campus de Oza, Universidade da Coruña (UDC), Campus de Oza, 15006 A Coruña, Spain
| | - Joana Magalhães
- Unidad de Medicina Regenerativa, Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC. SERGAS. C/ As Xubias de Arriba 84, 15006 A Coruña, Spain; (P.C.-B.); (E.F.B.); (F.J.B.)
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), As Carballeiras S/N, Campus de Elviña, 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
11
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
12
|
Piuzzi NS, Mantripragada VP, Kwee E, Sumski A, Selvam S, Boehm C, Muschler GF. Bone Marrow-Derived Cellular Therapies in Orthopaedics: Part II: Recommendations for Reporting the Quality of Bone Marrow-Derived Cell Populations. JBJS Rev 2019; 6:e5. [PMID: 30461436 DOI: 10.2106/jbjs.rvw.18.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Nicolas S Piuzzi
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio.,Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Venkata P Mantripragada
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Edward Kwee
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Alan Sumski
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Selvaanish Selvam
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Cynthia Boehm
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - George F Muschler
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
13
|
Petters O, Schmidt C, Henkelmann R, Pieroh P, Hütter G, Marquass B, Aust G, Schulz RM. Single-Stage Preparation of Human Cartilage Grafts Generated from Bone Marrow-Derived CD271 + Mononuclear Cells. Stem Cells Dev 2019; 27:545-555. [PMID: 29482445 DOI: 10.1089/scd.2017.0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Due to the limited self-healing capacity of articular cartilage, innovative, regenerative approaches are of particular interest. The use of two-stage procedures utilizing in vitro-expanded mesenchymal stromal cells (MSCs) from various cell sources requires good manufacturing practice-compliant production, a process with high demands on time, staffing, and financial resources. In contrast, one- stage procedures are directly available, but need a safe enrichment of potent MSCs. CD271 is a surface marker known to marking the majority of native MSCs in bone marrow (BM). In this study, the feasibility of generating a single-stage cartilage graft of enriched CD271+ BM-derived mononuclear cells (MNCs) without in vitro monolayer expansion from eight healthy donors was investigated. Cartilage grafts were generated by magnetic-activated cell sorting and separated cells were directly transferred into collagen type I hydrogels, followed by 3D proliferation and differentiation period of CD271+, CD271-, or unseparated MNCs. CD271+ MNCs showed the highest proliferation rate, cell viability, sulfated glycosaminoglycan deposition, and cartilage marker expression compared to the CD271- or unseparated MNC fractions in 3D culture. Analysis according to the minimal criteria of the International Society for Cellular Therapy highlighted a 66.8-fold enrichment of fibroblast colony-forming units in CD271+ MNCs and the only fulfillment of the MSC marker profile compared to unseparated MNCs. In summary, CD271+ MNCs are capable of generating adequate articular cartilage grafts presenting high cell viability and notable chondrogenic matrix deposition in a CE-marked collagen type I hydrogel, which can obviate the need for an initial monolayer expansion.
Collapse
Affiliation(s)
- Oliver Petters
- 1 Centre for Biotechnology and Biomedicine, University of Leipzig , Leipzig, Germany .,2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany
| | - Christian Schmidt
- 1 Centre for Biotechnology and Biomedicine, University of Leipzig , Leipzig, Germany .,2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany
| | - Ralf Henkelmann
- 2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany
| | - Philipp Pieroh
- 2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany .,3 Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg , Halle, Germany
| | - Gero Hütter
- 4 CCC Cellex Collection Center GmbH , Dresden, Germany
| | - Bastian Marquass
- 2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany
| | - Gabriela Aust
- 5 Research Laboratories of the Department of Orthopedics, Trauma and Plastic Surgery, University Hospital of Leipzig AöR , Leipzig, Germany
| | - Ronny M Schulz
- 1 Centre for Biotechnology and Biomedicine, University of Leipzig , Leipzig, Germany .,2 Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig , Leipzig, Germany
| |
Collapse
|
14
|
Wang W, Han ZC. Heterogeneity of Human Mesenchymal Stromal/Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:165-177. [DOI: 10.1007/978-3-030-11096-3_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Petters O, Schmidt C, Thuemmler C, Peinemann F, Zscharnack M, Somerson JS, Schulz RM. Point-of-care treatment of focal cartilage defects with selected chondrogenic mesenchymal stromal cells-An in vitro proof-of-concept study. J Tissue Eng Regen Med 2018; 12:1717-1727. [PMID: 29766671 DOI: 10.1002/term.2699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/16/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Due to the poor self-healing capacities of cartilage, innovative approaches are a major clinical need. The use of in vitro expanded mesenchymal stromal cells (MSCs) in a 2-stage approach is accompanied by cost-, time-, and personnel-intensive good manufacturing practice production. A 1-stage intraoperative procedure could overcome these drawbacks. The aim was to prove the feasibility of a point-of-care concept for the treatment of cartilage lesions using defined MSC subpopulations in a collagen hydrogel without prior MSC monolayer expansion. We tested 4 single marker candidates (MSCA-1, W4A5, CD146, CD271) for their effectiveness of separating colony-forming units of ovine MSCs via magnetic cell separation. The most promising surface marker with regard to the highest enrichment of colony-forming cells was subsequently used to isolate a MSC subpopulation for the direct generation of a cartilage graft composed of a collagen type I hydrogel without the propagation of MSCs in monolayer. We observed that separation with CD271 sustained the highest enrichment of colony-forming units. We then demonstrated the feasibility of generating a cartilage graft with an unsorted bone marrow mononuclear cell fraction and with a characterized CD271 positive MSC subpopulation without the need for a prior cell expansion. A reduced volume of 6.25% of the CD271 positive MSCs was needed to achieve the same results regarding chondrogenesis compared with the unseparated bone marrow mononuclear cell fraction, drastically reducing the number of nonrelevant cells. This study provides a proof-of-concept and reflects the potential of an intraoperative procedure for direct seeding of cartilage grafts with selected CD271 positive cells from bone marrow.
Collapse
Affiliation(s)
- Oliver Petters
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Schmidt
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Thuemmler
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Peinemann
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Zscharnack
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Jeremy S Somerson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Ronny M Schulz
- Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.,Clinic of Orthopedics, Traumatology and Plastic Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Piuzzi NS, Hussain ZB, Chahla J, Cinque ME, Moatshe G, Mantripragada VP, Muschler GF, LaPrade RF. Variability in the Preparation, Reporting, and Use of Bone Marrow Aspirate Concentrate in Musculoskeletal Disorders: A Systematic Review of the Clinical Orthopaedic Literature. J Bone Joint Surg Am 2018; 100:517-525. [PMID: 29557869 DOI: 10.2106/jbjs.17.00451] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Interest in the therapeutic potential of bone marrow aspirate concentrate (BMAC) has grown exponentially. However, comparisons among studies and their processing methods are challenging because of inconsistent reporting of protocols, as well as poor characterization of the composition of the initial bone marrow aspirate and of the final products delivered. The purpose of this study was to perform a systematic review of the literature to evaluate the level of reporting related to the protocols used for BMAC preparation and the composition of BMAC utilized in the treatment of musculoskeletal diseases in published clinical studies. METHODS A systematic review of the literature was performed by searching PubMed, MEDLINE, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials from 1980 to 2016. Inclusion criteria were human clinical trials, English language, and manuscripts that reported on the use of BMAC in musculoskeletal conditions. RESULTS After a comprehensive review of the 986 identified articles, 46 articles met the inclusion criteria for analysis. No study provided comprehensive reporting that included a clear description of the preparation protocol that could be used by subsequent investigators to repeat the method. Only 14 (30%) of the studies provided quantitative metrics of the composition of the BMAC final product. CONCLUSIONS The reporting of BMAC preparation protocols in clinical studies was highly inconsistent and studies did not provide sufficient information to allow the protocol to be reproduced. Moreover, comparison of the efficacy and yield of BMAC products is precluded by deficiencies in the reporting of preparation methods and composition. Future studies should contain standardized and stepwise descriptions of the BMAC preparation protocol, and the composition of the BMAC delivered, to permit validating and rationally optimizing the role of BMAC in musculoskeletal care.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopaedic Surgery and Bioengineering, Cleveland Clinic, Cleveland, Ohio.,Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado
| | - Mark E Cinque
- Steadman Philippon Research Institute, Vail, Colorado
| | - Gilbert Moatshe
- Steadman Philippon Research Institute, Vail, Colorado.,Oslo University Hospital, University of Oslo, Oslo, Norway.,OSTRC, The Norwegian School of Sports Sciences, Oslo, Norway
| | | | - George F Muschler
- Department of Orthopaedic Surgery and Bioengineering, Cleveland Clinic, Cleveland, Ohio
| | - Robert F LaPrade
- Steadman Philippon Research Institute, Vail, Colorado.,The Steadman Clinic, Vail, Colorado
| |
Collapse
|
17
|
Samsonraj RM, Dudakovic A, Manzar B, Sen B, Dietz AB, Cool SM, Rubin J, van Wijnen AJ. Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2. Stem Cells Transl Med 2017; 7:197-209. [PMID: 29280310 PMCID: PMC5788881 DOI: 10.1002/sctm.17-0086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022] Open
Abstract
Strategies for musculoskeletal tissue regeneration apply adult mesenchymal stem/stromal cells (MSCs) that can be sourced from bone marrow- and lipo-aspirates. Adipose tissue-derived MSCs are more easily harvested in the large quantities required for skeletal tissue-engineering approaches, but are generally considered to be less osteogenic than bone marrow MSCs. Therefore, we tested a new molecular strategy to improve their osteogenic lineage-differentiation potential using the fungal metabolite cytochalasin D (CytoD). We show that CytoD, which may function by redistributing the intracellular location of β-actin (ACTB), is a potent osteogenic stimulant as reflected by significant increases in alkaline phosphatase activity, extracellular matrix mineralization, and osteoblast-related gene expression (e.g., RUNX2, ALPL, SPARC, and TGFB3). RNA sequencing analyses of MSCs revealed that acute CytoD treatment (24 hours) stimulates a broad program of osteogenic biomarkers and epigenetic regulators. CytoD decreases mRNA and protein levels of the Polycomb chromatin regulator Enhancer of Zeste Homolog 2 (EZH2), which controls heterochromatin formation by mediating trimethylation of histone 3 lysine 27 (H3K27me3). Reduced EZH2 expression decreases cellular H3K27me3 marks indicating a global reduction in heterochromatin. We conclude that CytoD is an effective osteogenic stimulant that mechanistically functions by blocking both cytoplasmic actin polymerization and gene-suppressive epigenetic mechanisms required for the acquisition of the osteogenic phenotype in adipose tissue-derived MSCs. This finding supports the use of CytoD in advancing the osteogenic potential of MSCs in skeletal regenerative strategies. Stem Cells Translational Medicine 2018;7:197-209.
Collapse
Affiliation(s)
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bushra Manzar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, Majka M. Multiple Autologous Bone Marrow-Derived CD271 + Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children. Stem Cells Transl Med 2017; 7:20-33. [PMID: 29224250 PMCID: PMC5746144 DOI: 10.1002/sctm.17-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
There is a need among patients suffering from drug‐resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 109; intravenous: 0.38 × 109–1.72 × 109) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 106–40 × 106) every 3 months. The BMMSCs used were a unique population derived from CD271‐positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow‐up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. stemcellstranslationalmedicine2018;7:20–33
Collapse
Affiliation(s)
- Olga Milczarek
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Danuta Jarocha
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Anna Starowicz-Filip
- Department of Medical Psychology, Jagiellonian University School of Medicine, Cracow, Poland
| | - Stanislaw Kwiatkowski
- Departments of Children Surgery, Jagiellonian University School of Medicine, Cracow, Poland
| | - Bogna Badyra
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| | - Marcin Majka
- Transplantation, Institute of Pediatrics, Jagiellonian University School of Medicine, Cracow, Poland
| |
Collapse
|
19
|
Mesenchymal stromal/stem cell separation methods: concise review. Cell Tissue Bank 2017; 18:443-460. [PMID: 28821996 DOI: 10.1007/s10561-017-9658-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) possess unique biological characteristics such as plasticity, long term self-renewal, secretion of various bioactive molecules and ability of active migration to the diseased tissues that make them unique tool for regenerative medicine, nowadays. Until now MSCs were successfully derived from many tissue sources including bone marrow, umbilical cord, adipose tissue, dental pulp etc. The crucial step prior to their in vitro expansion, banking or potential clinical application is their separation. This review article aims to briefly describe the main MSCs separations techniques currently available, their basic principles, as well as their advantages and limits. In addition the attention is paid to the markers presently applicable for immunoaffinity-based separation of MSCs from different tissues and organs.
Collapse
|
20
|
O'Brien K, Tailor P, Leonard C, DiFrancesco LM, Hart DA, Matyas JR, Frank CB, Krawetz RJ. Enumeration and Localization of Mesenchymal Progenitor Cells and Macrophages in Synovium from Normal Individuals and Patients with Pre-Osteoarthritis or Clinically Diagnosed Osteoarthritis. Int J Mol Sci 2017; 18:E774. [PMID: 28379175 PMCID: PMC5412358 DOI: 10.3390/ijms18040774] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disorder characterized by chondrocyte apoptosis and degeneration of articular cartilage resulting in loss of mobility and pain. Inflammation plays a key role in the development and progression of OA both on the side of apoptosis and repair, while its exact role in pathogenesis has yet to be fully elucidated. Few studies have examined the cellular composition (inflammatory cells and/or progenitor cells) in the synovium of patients with pre-OA (asymptomatic with cartilage damage). Therefore, in the current study, mesenchymal progenitor cells (MPCs) and macrophages were enumerated within normal, pre-OA and OA synovium. No differences were observed between MPCs in normal vs. pre-OA, however, fewer macrophages were observed in pre-OA vs. normal synovium. Osteoarthritic synovium contained greater numbers of both MPCs and macrophages. Interestingly, the localization of MPCs and macrophages was affected by disease severity. In normal and pre-OA synovium, MPCs and macrophages co-localized, while in OA synovium, MPCs and macrophage populations were spatially distinct. Examining the cellular interactions between MPCs and macrophages in synovium may be essential for understanding the role of these cells in the onset and/or pathogenesis of the disease. This study has provided a first step by examining these cell types both spatially and temporally (e.g., disease severity). Further cellular and molecular studies will be needed to determine the functions of these cells in the context of disease and in relation to each other and the joint as a whole.
Collapse
Affiliation(s)
- Kate O'Brien
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - Pankaj Tailor
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - Catherine Leonard
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - Lisa M DiFrancesco
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department of Surgery, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - John R Matyas
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - Cyril B Frank
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department of Surgery, University of Calgary, Calgary, AB T2N4N1, Canada.
| | - Roman J Krawetz
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1, Canada.
- Department of Surgery, University of Calgary, Calgary, AB T2N4N1, Canada.
- The D-BOARD European Consortium for Biomarker Discovery, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
21
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
22
|
Del Rey MJ, Faré R, Usategui A, Cañete JD, Bravo B, Galindo M, Criado G, Pablos JL. CD271(+) stromal cells expand in arthritic synovium and exhibit a proinflammatory phenotype. Arthritis Res Ther 2016; 18:66. [PMID: 26980374 PMCID: PMC4791981 DOI: 10.1186/s13075-016-0966-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
Background CD271+ stromal cells (SCs) with multipotent stem cell capacity have been identified in synovial tissues, but their functional significance is unknown. We analyzed the distribution of CD271+ cells in inflammatory synovial tissues as well as their ex vivo immunomodulatory and inflammatory phenotypes. Methods CD271 expression was analyzed by immunohistochemistry in synovial tissues and by flow cytometry in primary adherent synovial cell cultures from rheumatoid arthritis (RA), osteoarthritis (OA), and non-inflammatory control tissues. Isolation of CD271+ synovial SCs was carried out by magnetic cell sorting. Allogeneic T-cell/SC cocultures were performed to analyze the regulatory capacity of these cells on T-cell proliferation and cytokine production. The production of inflammatory mediators was analyzed in cultures of sorted CD271+/− SCs. The capacity of CD271+/− SCs to induce inflammatory cell recruitment in vivo was evaluated in subcutaneous implants in immunodeficient mice. Results CD271+ SC were detected in non-inflammatory as well as in arthritic synovial tissues with a specific perivascular distribution. CD271+ SC density was increased in RA and OA compared with normal synovial tissues. T-cell proliferation and cytokine synthesis were similarly modified by CD271+ and CD271− SCs. Sorted CD271+ SCs from OA synovial tissues released significantly more interleukin (IL)-6, matrix metalloproteinase (MMP)-1, and MMP-3 than CD271− SCs. In immunodeficient mice, implants of CD271+ SCs induced significantly higher myeloid cell infiltration than CD271− SCs. Conclusions Our results demonstrate that CD271+ perivascular SCs expand in RA and OA synovial tissues. CD271+ cells showed enhanced proinflammatory properties ex vivo and in vivo, whereas immunoregulatory properties were equivalent in CD271+ and CD271− SC. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0966-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Regina Faré
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Juan D Cañete
- Unitat d'Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Beatriz Bravo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital 12 de Octubre, Madrid, Spain
| | - María Galindo
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Gabriel Criado
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - José L Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041, Madrid, Spain.
| |
Collapse
|
23
|
Narcisi R, Cleary MA, Brama PAJ, Hoogduijn MJ, Tüysüz N, ten Berge D, van Osch GJVM. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Reports 2015; 4:459-72. [PMID: 25733021 PMCID: PMC4375944 DOI: 10.1016/j.stemcr.2015.01.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair. WNT3A and FGF2 synergistically promote MSC proliferation WNT3A and FGF2 synergistically enhance MSC chondrogenic potential during expansion WNT3A and FGF2 maintain MSC characteristics over multiple passages In vitro WNT signaling modulation leads to stable cartilage formation in vivo
Collapse
Affiliation(s)
- Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Mairéad A Cleary
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands; Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pieter A J Brama
- Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin J Hoogduijn
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Nesrin Tüysüz
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Derk ten Berge
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands.
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Magalhães J, Lebourg M, Deplaine H, Gómez Ribelles JL, Blanco FJ. Effect of the Physicochemical Properties of Pure or Chitosan-Coated Poly(L-Lactic Acid)Scaffolds on the Chondrogenic Differentiation of Mesenchymal Stem Cells from Osteoarthritic Patients. Tissue Eng Part A 2015; 21:716-28. [DOI: 10.1089/ten.tea.2014.0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joana Magalhães
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Myriam Lebourg
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - Harmony Deplaine
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - José Luis Gómez Ribelles
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia. Valencia, Spain
| | - Francisco J. Blanco
- Grupo de Bioingeniería Tisular y Terapia Celular (GBTTC-CHUAC), Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
25
|
Lv FJ, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2015; 32:1408-19. [PMID: 24578244 DOI: 10.1002/stem.1681] [Citation(s) in RCA: 714] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/09/2014] [Indexed: 12/13/2022]
Abstract
The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo.
Collapse
Affiliation(s)
- Feng-Juan Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China; Stem Cell & Regenerative Medicine Consortium, The University of Hong Kong, Hong Kong SAR, People's Republic of China; Center for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Rocha B, Cillero-Pastor B, Eijkel G, Bruinen AL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging. Proteomics 2015; 15:702-13. [PMID: 25346268 DOI: 10.1002/pmic.201400260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/05/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSC) are an interesting alternative for cell-based therapy of cartilage defects attributable to their capacity to differentiate toward chondrocytes in the process termed chondrogenesis. The metabolism of lipids has recently been associated with the modulation of chondrogenesis and also with the development of pathologies related to cartilage degeneration. Information about the distribution and modulation of lipids during chondrogenesis could provide a panel of putative chondrogenic markers. Thus, the discovery of new lipid chondrogenic markers could be highly valuable for improving MSC-based cartilage therapies. In this work, MS imaging was used to characterize the spatial distribution of lipids in human bone marrow MSCs during the first steps of chondrogenic differentiation. The analysis of MSC micromasses at days 2 and 14 of chondrogenesis by MALDI-MSI led to the identification of 20 different lipid species, including fatty acids, sphingolipids, and phospholipids. Phosphocholine, several sphingomyelins, and phosphatidylcholines were found to increase during the undifferentiated chondrogenic stage. A particularly detected lipid profile was verified by TOF secondary ion MS. Using this technology, a higher intensity of phosphocholine-related ions was observed in the peripheral region of the micromasses collected at day 14.
Collapse
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC - Hospital Universitario de A Coruña, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Cicione C, Muiños-López E, Hermida-Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ. Alternative protocols to induce chondrogenic differentiation: transforming growth factor-β superfamily. Cell Tissue Bank 2014; 16:195-207. [DOI: 10.1007/s10561-014-9472-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022]
|
28
|
Bone marrow derived stem cells in joint and bone diseases: a concise review. INTERNATIONAL ORTHOPAEDICS 2014; 38:1787-801. [PMID: 25005462 DOI: 10.1007/s00264-014-2445-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/21/2014] [Indexed: 12/11/2022]
Abstract
Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
Collapse
|
29
|
Harris Q, Seto J, O'Brien K, Lee PS, Kondo C, Heard BJ, Hart DA, Krawetz RJ. Monocyte chemotactic protein-1 inhibits chondrogenesis of synovial mesenchymal progenitor cells: an in vitro study. Stem Cells 2014; 31:2253-65. [PMID: 23836536 DOI: 10.1002/stem.1477] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a multifactorial, often progressive, painful disease. OA often progresses with an apparent irreversible loss of articular cartilage, exposing underlying bone, resulting in pain and loss of mobility. This cartilage loss is thought to be permanent due to ineffective repair and apparent lack of stem/progenitor cells in that tissue. However, the adjacent synovial lining and synovial fluid are abundant with mesenchymal progenitor/stem cells (synovial mesenchymal progenitor cells [sMPCs]) capable of differentiating into cartilage both in vitro and in vivo. Previous studies have demonstrated that MPCs can home to factors such as monocyte chemotactic protein 1 (MCP-1/CCL2) expressed after injury. While MCP-1 (and its corresponding receptors) appears to play a role in recruiting stem cells to the site of injury, in this study, we have demonstrated that MCP-1 is upregulated in OA synovial fluid and that exposure to MCP-1 activates sMPCs, while concurrently inhibiting these cells from undergoing chondrogenesis in vitro. Furthermore, exposure to physiological (OA knee joint synovial fluid) levels of MCP-1 triggers changes in the transcriptome of sMPCs and prolonged exposure to the chemokine induces the expression of MCP-1 in sMPCs, resulting in a positive feedback loop from which sMPCs cannot apparently escape. Therefore, we propose a model where MCP-1 (normally expressed after joint injury) recruits sMPCs to the area of injury, but concurrently triggers changes in sMPC transcriptional regulation, leading to a blockage in the chondrogenic program. These results may open up new avenues of research into the lack of endogenous repair observed after articular cartilage injury and/or arthritis.
Collapse
Affiliation(s)
- Quinn Harris
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rocha B, Calamia V, Casas V, Carrascal M, Blanco FJ, Ruiz-Romero C. Secretome Analysis of Human Mesenchymal Stem Cells Undergoing Chondrogenic Differentiation. J Proteome Res 2014; 13:1045-54. [DOI: 10.1021/pr401030n] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Valentina Calamia
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Montserrat Carrascal
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Francisco J. Blanco
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- RIER-RED
de Inflamación
y Enfermedades Reumáticas, INIBIC−CHUAC, 15006-A Coruña, Spain
| | - Cristina Ruiz-Romero
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- CIBER-BBN Instituto
de Salud Carlos III, INIBIC−CHUAC, 15006-A Coruña, Spain
| |
Collapse
|
31
|
Corselli M, Crisan M, Murray IR, West CC, Scholes J, Codrea F, Khan N, Péault B. Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 2013; 83:714-20. [DOI: 10.1002/cyto.a.22313] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mihaela Crisan
- Department of Cell Biology; Erasmus MC Stem Cell Institute; Rotterdam; The Netherlands
| | - Iain R. Murray
- Centre for Cardiovascular Science and Centre for Regenerative Medicine; University of Edinburgh; Edinburgh; United Kingdom
| | - Christopher C. West
- Centre for Cardiovascular Science and Centre for Regenerative Medicine; University of Edinburgh; Edinburgh; United Kingdom
| | - Jessica Scholes
- Eli and Edythe Broad Stem Cell Research Center; Flow Cytometry Core, University of California; Los Angeles; California
| | - Felicia Codrea
- Eli and Edythe Broad Stem Cell Research Center; Flow Cytometry Core, University of California; Los Angeles; California
| | - Nusrat Khan
- Centre for Cardiovascular Science and Centre for Regenerative Medicine; University of Edinburgh; Edinburgh; United Kingdom
| | | |
Collapse
|
32
|
Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2013; 3:1264. [PMID: 23232394 PMCID: PMC3535337 DOI: 10.1038/ncomms2226] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/25/2012] [Indexed: 02/07/2023] Open
Abstract
Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2−) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard. Back pain and sciatica are often caused by intervertebral disc degeneration. Sakai and colleagues identify a subset of nucleus pulposus progenitor cells from the intervertebral disc and show that loss of these progenitor cells correlates with ageing and intervertebral disc degeneration.
Collapse
|
33
|
Watson JT, Foo T, Wu J, Moed BR, Thorpe M, Schon L, Zhang Z. CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood. Cells Tissues Organs 2013; 197:496-504. [PMID: 23689142 DOI: 10.1159/000348794] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
CD271 has been applied to isolate mesenchymal stem cells (MSCs) from bone marrow and other tissues. Umbilical cord blood is a unique resource of stem cells and endothelial progenitor cells. Isolation of MSCs from umbilical cord blood, however, has been inefficient and inconsistent. This study was designed to examine the potential application of CD271 as a marker for the isolation of MSCs from umbilical cord blood. CD271+ cells were isolated from umbilical cord blood and bone marrow using CD271 antibody-conjugated microbeads, and characterized in osteogenic, chondrogenic and adipogenic differentiation. CD271+ cells from umbilical cord blood were slow to proliferate compared with those isolated from bone marrow. While CD271+ cells from bone marrow differentiated into osteogenic, chondrogenic and adipogenic lineages, there were no sound indications of differentiation by CD271+ cells from umbilical cord blood under the same differentiation conditions applied to the CD271+ cells from bone marrow. The study also found that bone marrow CD271+ cells remarkably upregulated the expression of chondrogenic genes under chondrogenic differentiation induction. When implanted into bone defects in mice, CD271+ cells from bone marrow regenerated significant bone, but the counterparts in umbilical cord blood formed little bone in the bone defects. In conclusion, CD271 is an efficient marker for MSC isolation from bone marrow but has failed to isolate MSCs from umbilical cord blood. CD271+ cells in bone marrow are particularly chondrogenic. The property of CD271+ cells is unique but varies from different tissues.
Collapse
Affiliation(s)
- J Tracy Watson
- Department of Orthopedic Surgery, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Potential application of cord blood-derived stromal cells in cellular therapy and regenerative medicine. JOURNAL OF BLOOD TRANSFUSION 2012; 2012:365182. [PMID: 24066257 PMCID: PMC3771124 DOI: 10.1155/2012/365182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
Neonatal stromal cells from umbilical cord blood (CB) are promising alternatives to bone marrow- (BM-) derived multipotent stromal cells (MSCs). In comparison to BM-MSC, the less mature CB-derived stromal cells have been described as a cell population with higher differentiation and proliferation potential that might be of potential interest for clinical application in regenerative medicine. Recently, it has become clear that cord blood contains different stromal cell populations, and as of today, a clear distinction between unrestricted somatic stromal cells (USSCs) and CB-MSC has been established. This classification is based on the expression of DLK-1, HOX, and CD146, as well as functional examination of the adipogenic differentiation potential and the capacity to support haematopoiesis in vitro and in vivo. However, a marker enabling a prospective isolation of the rare cell populations directly out of cord blood is yet to be found. Further analysis may help to reveal even more subpopulations with different properties, which could be useful for the directed application of these cells in preclinical models.
Collapse
|
35
|
Rocha B, Calamia V, Mateos J, Fernández-Puente P, Blanco FJ, Ruiz-Romero C. Metabolic labeling of human bone marrow mesenchymal stem cells for the quantitative analysis of their chondrogenic differentiation. J Proteome Res 2012; 11:5350-61. [PMID: 22989065 DOI: 10.1021/pr300572r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human mesenchymal stem cells (hMSCs), residing in bone marrow as well as in the synovial lining of joints, can be triggered to differentiate toward chondrocytes. Thus, hMSCs harbor great therapeutic potential for the repair of cartilage defects in osteoarthritis (OA) and other articular diseases. However, the molecular mechanisms underlying the chondrogenesis process are still in part unknown. In this work, we applied for the first time the stable isotope labeling by amino acids in cell culture (SILAC) technique for the quantitative analysis of protein modulation during the chondrogenic differentiation process of hMSCs. First, we have standardized the metabolic labeling procedure on MSCs isolated from bone marrow (hBMSCs), and we have assessed the quality of chondrogenesis taking place in these conditions. Then, chondrogenic differentiation was induced on these labeled cells, and a quantitative proteomics approach has been followed to evaluate protein changes between two differentiation days. With this strategy, we could identify 622 different proteins by LC-MALDI-TOF/TOF analysis and find 65 proteins whose abundance was significantly modulated between day 2 and day 14 of chondrogenesis. Immunohistochemistry analyses were performed to verify the changes on a panel of six proteins that play different biological roles in the cell: fibronectin, gelsolin, vimentin, alpha-ATPase, mitochondrial superoxide dismutase, and cyclophilin A. All of these proteins were increased at day 14 compared to day 2 of chondrogenic induction, thus being markers of the enhanced extracellular matrix synthesis, cell adhesion, metabolism, and response to stress processes that take place in the early steps of chondrogenesis. Our strategy has allowed an additional insight into both specific protein function and the mechanisms of chondrogenesis and has provided a panel of protein markers of this differentiation process in hBMSCs.
Collapse
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC-Hospital Universitario de A Coruña, 15006-A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Huang S, Leung V, Peng S, Li L, Lu FJ, Wang T, Lu W, Cheung KMC, Zhou G. Developmental definition of MSCs: new insights into pending questions. Cell Reprogram 2011; 13:465-72. [PMID: 21919705 DOI: 10.1089/cell.2011.0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a rare heterogeneous population of multipotent cells that can be isolated from many different adult and fetal tissues. They exhibit the capacity to give rise to cells of multiple lineages and are defined by their phenotype and functional properties, such as spindle-shaped morphology, adherence to plastic, immune response modulation capacity, and multilineage differentiation potential. Accordingly, MSCs have a wide range of promising applications in the treatment of autoimmune diseases, tissue repair, and regeneration. Recent studies have shed some light on the exact identity and native distribution of MSCs, whereas controversial results are still being reported, indicating the need for further review on their definition and origin. In this article, we summarize the important progress and describe some of our own relevant work on the developmental definition of MSCs.
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|