1
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
2
|
Rojas-Torres M, Sánchez-Gomar I, Rosal-Vela A, Beltrán-Camacho L, Eslava-Alcón S, Alonso-Piñeiro JÁ, Martín-Ramírez J, Moreno-Luna R, Durán-Ruiz MC. Assessment of endothelial colony forming cells delivery routes in a murine model of critical limb threatening ischemia using an optimized cell tracking approach. Stem Cell Res Ther 2022; 13:266. [PMID: 35729651 PMCID: PMC9210810 DOI: 10.1186/s13287-022-02943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 01/15/2023] Open
Abstract
Background Endothelial colony forming cells (ECFCs), alone or in combination with mesenchymal stem cells, have been selected as potential therapeutic candidates for critical limb-threatening ischemia (CLTI), mainly for those patients considered as “no-option,” due to their capability to enhance revascularization and perfusion recovery of ischemic tissues. Nevertheless, prior to translating cell therapy to the clinic, biodistribution assays are required by regulatory guidelines to ensure biosafety as well as to discard undesired systemic translocations. Different approaches, from imaging technologies to qPCR-based methods, are currently applied. Methods In the current study, we have optimized a cell-tracking assay based on DiR fluorescent cell labeling and near-infrared detection for in vivo and ex vivo assays. Briefly, an improved protocol for DiR staining was set up, by incubation of ECFCs with 6.67 µM DiR and intensive washing steps prior cell administration. The minimal signal detected for the residual DiR, remaining after these washes, was considered as a baseline signal to estimate cell amounts correlated to the DiR intensity values registered in vivo. Besides, several assays were also performed to determine any potential effect of DiR over ECFCs functionality. Furthermore, the optimized protocol was applied in combination with qPCR amplification of specific human Alu sequences to assess the final distribution of ECFCs after intramuscular or intravenous administration to a murine model of CLTI. Results The optimized DiR labeling protocol indicated that ECFCs administered intramuscularly remained mainly within the hind limb muscle while cells injected intravenously were found in the spleen, liver and lungs. Conclusion Overall, the combination of DiR labeling and qPCR analysis in biodistribution assays constitutes a highly sensitive approach to systemically track cells in vivo. Thereby, human ECFCs administered intramuscularly to CLTI mice remained locally within the ischemic tissues, while intravenously injected cells were found in several organs. Our data corroborate the need to perform biodistribution assays in order to define specific parameters such as the optimal delivery route for ECFCs before their application into the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02943-8.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - Sara Eslava-Alcón
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | - José Ángel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain
| | | | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain. .,Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
3
|
Mohseni M, Shojaei S, Mehravi B, Mohammadi E. Natural polymeric nanoparticles as a non-invasive probe for mesenchymal stem cell labelling. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:770-776. [PMID: 32297529 DOI: 10.1080/21691401.2020.1748641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-invasive tracking of stem cells after transplant is necessary for cell therapy and tissue engineering field. Herein, we introduce natural and biodegradable nanoparticle to develop a highly efficient nanoprobe with the ability to penetrate the stem cell for tracking. Based on the use of (Gd3+) to label stem cells for magnetic resonance imaging (MRI) we synthesized nanoparticle-containing Gd3+. Gd3+ could be used as t1-weighted MRI contrast agents. In this study, chitosan-alginate nanoparticles were synthesized as a clinical Dotarem® carrier for decreased t1-weighted. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were utilized for nanoprobe characterization and ICP analysis was performed for Gd3+ concentration measurement. The results illustrate that nanoprobes with spherical shape and with a size of 80 nm without any aggregation were obtained. Relaxivity results suggest that r1 in the phantom was 12.8 mM-1s-1 per Gd3+ ion, which is 3.5 times larger than that for Dotarem® (r1 ∼3.6 mM-1s-1 per Gd3+ ion) and this result for synthesized nanoprobe in stem cells 3.56 mM-1s-1 per Gd3+ ion with 2.16 times larger than that for Dotarem® was reported and also enhanced signal in in-vivo imaging was observed. Chitosan-alginate nanoparticles as a novel biocompatible probe for stem cell tracking can be utilized in tissue engineering approach.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shojaei
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Mehravi
- Faculty of advanced technologies in Medicine, Department of Medical nanotechnology, Iran University of Medical Sciences, Tehran, Iran.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Mohammadi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shelat R, Bhatt LK, Khanna A, Chandra S. A comprehensive toxicity evaluation of novel amino acid-modified magnetic ferrofluids for magnetic resonance imaging. Amino Acids 2019; 51:929-943. [DOI: 10.1007/s00726-019-02726-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
|
5
|
Influence of Molecular Mobility on Contrast Efficiency of Branched Polyethylene Glycol Contrast Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2018:1259325. [PMID: 30627056 PMCID: PMC6305028 DOI: 10.1155/2018/1259325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/02/2022]
Abstract
For a water-soluble polyethylene glycol (PEG) magnetic resonance imaging (MRI) contrast agent, it has been demonstrated that the contrast efficiency was increased with increased branched structure of the contrast agent. However, the cause of enhanced contrast efficiency by the branched structure has not been clarified. Hence, we investigate the cause of the contrast agent enhancement by changing the Gd introduction ratio of the eight-arm PEG from 1.97 to 4.07; furthermore, the terminal mobility of the contrast agents with different structures was evaluated using proton nuclear magnetic resonance (1H-NMR) spectroscopy. It was shown that the relaxivity and contrast luminance of the synthesized branched PEG-Gd contrast agents are larger than those of linear PEG-Gd and commercially available contrast agents. Additionally, the change in the Gd introduction ratio did not affect the contrast efficiency. The terminal mobility results measured by NMR show that the linewidth at half height became broader with an increased number of branches, implying that the mobility of branched PEG-Gd is slower than that of linear PEG-Gd. Interestingly, the linewidth at half height of different structures did not change in an organic solvent; this phenomenon appeared specifically in water. It is suggested that the stable branched structure enabled the improvement in the relaxivity and contrast luminance.
Collapse
|
6
|
Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:88-102. [PMID: 25012069 PMCID: PMC4322020 DOI: 10.1089/ten.teb.2014.0180] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
Abstract
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies.
Collapse
Affiliation(s)
- Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
The effect of autologous endothelial progenitor cell transplantation combined with extracorporeal shock-wave therapy on ischemic skin flaps in rats. Cytotherapy 2014; 16:1098-109. [DOI: 10.1016/j.jcyt.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
|
8
|
Tachibana Y, Enmi JI, Agudelo CA, Iida H, Yamaoka T. Long-Term/Bioinert Labeling of Rat Mesenchymal Stem Cells with PVA-Gd Conjugates and MRI Monitoring of the Labeled Cell Survival after Intramuscular Transplantation. Bioconjug Chem 2014; 25:1243-51. [DOI: 10.1021/bc400463t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yoichi Tachibana
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Jun-ichiro Enmi
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Carlos A. Agudelo
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hidehiro Iida
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering and ‡Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| |
Collapse
|
9
|
Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Am J Cancer Res 2013; 3:595-615. [PMID: 23946825 PMCID: PMC3741608 DOI: 10.7150/thno.5366] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/12/2012] [Indexed: 12/21/2022] Open
Abstract
Stem cells hold great promise for the treatment of multiple human diseases and disorders. Tracking and monitoring of stem cells in vivo after transplantation can supply important information for determining the efficacy of stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be the most effective and safest non-invasive technique for stem cell tracking in living bodies. Commercial superparamagnetic iron oxide nanoparticles (SPIONs) in the aid of transfection agents (TAs) have been applied to labeling stem cells. However, owing to the potential toxicity of TAs, more attentions have been paid to develop novel SPIONs with specific surface coating or functional moieties which facilitate effective cell internalization in the absence of TAs. This review aims to summarize the recent progress in the design and preparation of SPIONs as cellular MRI probes, to discuss their applications and current problems facing in stem cell labeling and tracking, and to offer perspectives and solutions for the future development of SPIONs in this field.
Collapse
|
10
|
Turtzo LC, Budde MD, Gold EM, Lewis BK, Janes L, Yarnell A, Grunberg NE, Watson W, Frank JA. The evolution of traumatic brain injury in a rat focal contusion model. NMR IN BIOMEDICINE 2013; 26:468-479. [PMID: 23225324 PMCID: PMC3596464 DOI: 10.1002/nbm.2886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/28/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
Serial MRI facilitates the in vivo analysis of the intra- and intersubject evolution of traumatic brain injury lesions. Despite the availability of MRI, the natural history of experimental focal contusion lesions in the controlled cortical impact (CCI) rat model has not been well described. We performed CCI on rats and MRI during the acute to chronic stages of cerebral injury to investigate the time course of changes in the brain. Female Wistar rats underwent CCI of their left motor cortex with a flat impact tip driven by an electromagnetic piston. In vivo MRI was performed at 7 T serially over 6 weeks post-CCI. The appearances of CCI-induced lesions and lesion-associated cortical volumes were variable on MRI, with the percentage change in cortical volume of the CCI ipsilateral side relative to the contralateral side ranging from 18% within 2 h of injury on day 0 to a peak of 35% on day 1, and a trough of -28% by week 5/6, with an average standard deviation of ± 14% at any given time point. In contrast, the percentage change in cortical volume of the ipsilateral side relative to the contralateral side in control rats was not significant (1 ± 2%). Hemorrhagic conversion within and surrounding the CCI lesion occurred between days 2 and 9 in 45% of rats, with no hemorrhage noted on the initial scan. Furthermore, hemorrhage and hemosiderin within the lesion were positive for Prussian blue and highly autofluorescent on histological examination. Although some variation in injuries may be technique related, the divergence of similar lesions between initial and final scans demonstrates the inherent biological variability of the CCI rat model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William Watson
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, MD, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Li XX, Li KA, Qin JB, Ye KC, Yang XR, Li WM, Xie QS, Jiang ME, Zhang GX, Lu XW. In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia. Int J Nanomedicine 2013; 8:1063-73. [PMID: 23515426 PMCID: PMC3598527 DOI: 10.2147/ijn.s42578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications. Methods In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation. Results With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen. Conclusion APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells.
Collapse
Affiliation(s)
- Xiang-Xiang Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Agudelo CA, Tachibana Y, Yamaoka T. Synthesis, properties, and endothelial progenitor cells labeling stability of dextranes as polymeric magnetic resonance imaging contrast agents. J Biomater Appl 2012; 28:473-80. [DOI: 10.1177/0885328212462259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic resonance imaging is one of the most important fields for cellular imaging due to its non-invasive capacity, spatial resolution, and sensibility to visualized transplanted cells. An enhanced magnetic resonance image can be achieved by using contrast agents containing paramagnetic gadolinium chelates, which have the widest clinical use. To obtain a better contrast-enhancement and reduce the concentration of Gd for payload, one strategy is to conjugate the gadolinium(III) chelate to polymeric materials that will lead into an increase in the rotational correlation time and therefore improve the relaxivity. Four series of dextran gadolinium chelates were synthesized which are of interest as potential MRI contrast agents to track bone marrow-derived endothelial progenitor cells in vivo. The dextranes with molecular weights were characterized, introduced into the endothelial progenitor cells by electroporation, and injected in aqueous solution into rats to acquire the MR images. We have shown that by selecting polymers of the appropriate molecular weight, stability into the cell after labeling, relaxivity, and retention into the body can be accomplished.
Collapse
Affiliation(s)
- Carlos A Agudelo
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | | | | |
Collapse
|
13
|
Kang HJ, Kim JY, Lee HJ, Kim KH, Kim TY, Lee CS, Lee HC, Park TH, Kim HS, Park YB. Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia. Korean Circ J 2012; 42:390-6. [PMID: 22787469 PMCID: PMC3390424 DOI: 10.4070/kcj.2012.42.6.390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 12/01/2011] [Indexed: 11/11/2022] Open
Abstract
Background and Objectives Poor homing efficiency is one of the major limitations of current stem cell therapy. Magnetic bionanoparticles (MPs) obtained from Magnetospirillum sp. AMB-1 have a lipid bilayer membrane and ferromagnetic properties. We evaluated a novel priming strategy using MPs to enhance the homing of transplanted progenitor cells to target tissue. Materials and Methods Effects of MP on proliferation, viability, and migration of late human endothelial progenitor cells (EPCs) were examined in vitro. Additionally, effects of MP on gene and protein expression related to survival and adhesion were evaluated. Homing and angiogenic efficiency of MP transferred late EPCs was evaluated in nude mouse hindlimb ischemia model. Results Below threshold concentration, MP transfer did not influence proliferation or survival of late EPCs, but enhanced migration and trans-endothelial migration of late EPCs toward magnet. Below threshold concentration, MP transfer did not influence gene and protein expression related to survival. In the mouse hindlimb ischemia model, late EPCs treated with high dose MP (5 ug/mL) showed enhanced homing of injected late EPCs in the ischemic limb by magnet, compared to low dose MP (1 ug/mL) treated late EPCs. In addition, high dose MP transferred EPC showed significantly better improvement of perfusion in ischemic limb compared to untreated EPC. Conclusion MP transfer with magnet application can be a promising novel strategy to enhance homing efficacy and outcomes of current stem cell therapy.
Collapse
Affiliation(s)
- Hyun-Jae Kang
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Agudelo CA, Tachibana Y, Hurtado AF, Ose T, Iida H, Yamaoka T. The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials 2011; 33:2439-48. [PMID: 22206594 DOI: 10.1016/j.biomaterials.2011.11.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
A water-soluble magnetic resonance imaging (MRI) contrast agent, Dextran mono-N-succinimidyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate-gadolinium(3+) (Dex-DOTA-Gd(3+)), was shown to enable monitoring of the anatomical migration and the survival period of transplanted stem cells for up to 1 month. Gadolinium molecules in the cells were rapidly eliminated from the site and excreted upon cell death. Endothelial progenitor cells (EPCs) transplanted into the inguinal femoral muscle of rats migrated distally through the knee in rats after hindlimb ischemia but did not migrate in non-ischemic rats. Interestingly, the survival period of transplanted EPCs was notably prolonged in the ischemic limb, indicating that EPCs are required by the ischemic tissues and that the fate of transplanted EPCs was affected by the disease. Compared to the commonly used particle type of MRI contrast agents, the system described in this study is expected to be invaluable to help clarifying the process of stem cell transplantation therapy.
Collapse
Affiliation(s)
- Carlos A Agudelo
- Department of Biomedical Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|