1
|
Zhou GP, Li SP, Jiang YZ, Sun J, Tan YL, Zeng ZG, Wei L, Qu W, Sun LY, Zhu ZJ. Domino hepatocyte transplantation using explanted human livers with metabolic defects attenuates D-GalN/LPS-induced acute liver failure. J Transl Med 2022; 20:479. [PMID: 36266691 PMCID: PMC9583592 DOI: 10.1186/s12967-022-03674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Background Explanted livers from patients with inherited metabolic liver diseases possess the potential to be a cell source of good-quality hepatocytes for hepatocyte transplantation (HT). This study evaluated the therapeutic effects of domino HT using hepatocytes isolated from explanted human livers for acute liver failure (ALF). Methods Isolated hepatocytes were evaluated for viability and function and then transplanted into d-galactosamine/lipopolysaccharide-induced ALF mice via splenic injection. The survival rate was analyzed by the Kaplan–Meier method and log-rank test. Liver function was evaluated by serum biochemical parameters, and inflammatory cytokine levels were measured by ELISA. The pathological changes in the liver tissues were assessed by hematoxylin–eosin staining. Hepatocyte apoptosis was investigated by TUNEL, and hepatocyte apoptosis-related proteins were detected by western blot. The localization of human hepatocytes in the injured mouse livers was detected by immunohistochemical analyses. Results Hepatocytes were successfully isolated from explanted livers of 10 pediatric patients with various liver-based metabolic disorders, with an average viability of 85.3% ± 13.0% and average yield of 9.2 × 106 ± 3.4 × 106 cells/g. Isolated hepatocytes had an excellent ability to secret albumin, produce urea, uptake indocyanine green, storage glycogen, and express alpha 1 antitrypsin, albumin, cytokeratin 18, and CYP3A4. Domino HT significantly reduced mortality, decreased serum levels of alanine aminotransferase and aspartate aminotransferase, and improved the pathological damage. Moreover, transplanted hepatocytes inhibited interleukin-6 and tumor necrosis factor-α levels. Domino HT also ameliorates hepatocyte apoptosis, as evidenced by decreased TUNEL positive cells. Positive staining for human albumin suggested the localization of human hepatocytes in ALF mice livers. Conclusion Explanted livers from patients with inheritable metabolic disorders can serve as a viable cell source for cell-based therapies. Domino HT using hepatocytes with certain metabolic defects has the potential to be a novel therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Yu-Le Tan
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 101100, China. .,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, 101100, China.
| |
Collapse
|
2
|
From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19. Pharmaceuticals (Basel) 2022; 15:ph15030318. [PMID: 35337116 PMCID: PMC8955152 DOI: 10.3390/ph15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In the past year, researchers have focused their attention on developing new strategies for understanding how the coronavirus affects human health and developing novel biomaterials to help patients with cardiovascular disease, which greatly increases the risk of complications from the virus. Natural biopolymers have been investigated, and it has been proven that alginate-based materials have important features. This review presents an overview of alginate-based materials used for developing innovative biomaterial platforms for biomedical applications to mitigate the effects of the coronavirus. As presented in this review, COVID-19 affects the cardiovascular system, not only the lungs. The first part of the review presents an introduction to cardiovascular diseases and describes how they have become an important problem worldwide. In the second part of the review, the origin and unique properties of the alginate biopolymer are presented. Among the properties of alginate, the most important are its biocompatibility, biodegradability, low cost, nontoxicity, unique structure, and interesting features after chemical modification. The third section of the review illustrates some of the functions of alginate in biomedical, pharmaceutical, and drug delivery applications. Researchers are using alginate to develop new devices and materials for repairing heart tissues that have been damaged by the coronavirus. Further, insights regarding how cardiovascular disease affects COVID-19 patients are also discussed. Finally, we conclude the review by presenting a summary of the impacts of COVID-19 on cardiovascular patients, their implications, and several hypothetical alginate-based treatments for infected patients.
Collapse
|
3
|
Zhou GP, Sun LY, Zhu ZJ. The concept of "domino" in liver and hepatocyte transplantation. Therap Adv Gastroenterol 2020; 13:1756284820968755. [PMID: 33149765 PMCID: PMC7586492 DOI: 10.1177/1756284820968755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023] Open
Abstract
Although orthotopic liver transplantation remains the only proven treatment for end-stage liver disease and inherited metabolic liver disease, its application has been limited by the scarcity of donor organs available for transplantation. Among feasible approaches developed to expand the donor organ pool, domino liver transplantation is a strategy in which explanted genetically defective livers of liver transplant recipients are used as grafts in other patients. Another promising therapeutic strategy is hepatocyte transplantation, an alternative to liver transplantation for certain groups of patients. However, the availability of primary hepatocytes is also hindered by the shortage of donor liver tissues. Against this background, domino hepatocyte transplantation, a strategy that utilizes the hepatocytes derived from the explanted livers of liver transplant recipients with noncirrhotic inherited metabolic liver diseases as the source of primary hepatocytes, may help increase the supply of liver cells available for transplantation. In this review, we focus on the status quo of domino liver transplantation and domino hepatocyte transplantation. We also describe recent innovative transplant strategies based on domino transplantation.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China,Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
4
|
Song L, Constanthin PE, Sun T, Li X, Xia Z, An L, Li F. Long-term Production of Glycogen and Hepatic-Derived, Cell-Invasion-Promoting Chemokines by Ultrasound-Driven Hepatic-Differentiated Human Bone Marrow Mesenchymal Stem Cells. Radiat Res 2020; 193:394-405. [PMID: 32126187 DOI: 10.1667/rr15421.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current treatment for liver failure is restricted to surgical liver transplantation, which is technically complicated, limited by the shortage of available organs and presents major risks to the patient. Bone marrow mesenchymal stem cells (BMSCs) represent promising sources of hepatocyte-like cells for cell transplantation treatment. However, a safe and efficient induction method for their differentiation remains to be defined. Here we further optimized an effective technique by combining high-dose treatment with hepatocyte growth factor (HGF) and ultrasound stimulation. The optimized ultrasound parameter (1.0 W/cm2 intensity, 1 MHz frequency, 20% duty cycle, 100 Hz pulse repetition frequency, 60-s irradiation duration, triple times in three days) combined with different HGF doses (10, 20 and 50 ng/ml) was used to treat BMSCs. The results showed that the specific hepatic markers, including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen, were increased in a dose-dependent manner. Their concentration was then further increased when ultrasound irradiation was administered (P < 0.05), as indicated by PCR, Western blot and immunofluorescence staining as well as a glycogen synthesis test. Furthermore, analysis of the hepatocyte-derived chemokines showed elevated stromal cell-derived factor 1alpha (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) after HGF treatment. Again, concentrations of those chemokines were further increased by ultrasound radiation (P < 0.05). The observed increased effect was sustained for 21 days. To summarize, we further defined the optimal combination of HGF and ultrasound treatment to increase the differentiation and chemotaxis of BMSCs in a safe, sustained and efficient manner. These findings provide a new perspective for stem cell orientation in the field of tissue engineering.
Collapse
Affiliation(s)
- Lin Song
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Paul E Constanthin
- Department of Fundamental Neurosciences, University of Geneva, Geneva, 1211, Switzerland.,Neurosurgery Department, Hôpitaux Universitaires de Genève, Geneva, 1205, Switzerland
| | - Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhen Xia
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
5
|
In vivo therapeutic applications of cell spheroids. Biotechnol Adv 2018; 36:494-505. [DOI: 10.1016/j.biotechadv.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
|
6
|
Bierwolf J, Volz T, Lütgehetmann M, Allweiss L, Riecken K, Warlich M, Fehse B, Kalff JC, Dandri M, Pollok JM. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer. Tissue Eng Part A 2017; 22:742-53. [PMID: 27068494 PMCID: PMC4876526 DOI: 10.1089/ten.tea.2015.0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo.
Collapse
Affiliation(s)
- Jeanette Bierwolf
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Tassilo Volz
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Marc Lütgehetmann
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lena Allweiss
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kristoffer Riecken
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Michael Warlich
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Boris Fehse
- 4 Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joerg C Kalff
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| | - Maura Dandri
- 2 Department of Internal Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,5 German Center for Infection Research , Hamburg-Lübeck-Borstel Partner Site, Hamburg, Germany
| | - Joerg-Matthias Pollok
- 1 Department for General, Visceral, Thoracic, and Vascular Surgery, University Medical Center Bonn , Bonn, Germany
| |
Collapse
|
7
|
|
8
|
Shteyer E, Ben Ya'acov A, Zolotaryova L, Sinai A, Lichtenstein Y, Pappo O, Kryukov O, Elkayam T, Cohen S, Ilan Y. Reduced liver cell death using an alginate scaffold bandage: a novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater 2014; 10:3209-16. [PMID: 24607858 DOI: 10.1016/j.actbio.2014.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022]
Abstract
Extended partial hepatectomy may be needed in cases of large hepatic mass, and can lead to fulminant hepatic failure. Macroporous alginate scaffold is a biocompatible matrix which promotes the growth, differentiation and long-term hepatocellular function of primary hepatocytes in vitro. Our aim was to explore the ability of implanted macroporous alginate scaffolds to protect liver remnants from acute hepatic failure after extended partial hepatectomy. An 87% partial hepatectomy (PH) was performed on C57BL/6 mice to compare non-treated mice to mice in which alginate or collagen scaffolds were implanted after PH. Mice were scarified 3, 6, 24 and 48 h and 6 days following scaffold implantation and the extent of liver injury and repair was examined. Alginate scaffolds significantly increased animal survival to 60% vs. 10% in non-treated and collagen-treated mice (log rank=0.001). Mice with implanted alginate scaffolds manifested normal and prolonged aspartate aminotransferases and alanine aminotransferases serum levels as compared with the 2- to 20-fold increase in control groups (P<0.0001) accompanied with improved liver histology. Sustained normal serum albumin levels were observed in alginate-scaffold-treated mice 48 h after hepatectomy. Incorporation of BrdU-positive cells was 30% higher in the alginate-scaffold-treated group, compared with non-treated mice. Serum IL-6 levels were significantly decreased 3h post PH. Biotin-alginate scaffolds were quickly well integrated within the liver tissue. Collectively, implanted alginate scaffolds support liver remnants after extended partial hepatectomy, thus eliminating liver injury and leading to enhanced animal survival after extended partial hepatectomy.
Collapse
Affiliation(s)
- Eyal Shteyer
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel; Pediatric Gastroenterology Unit, Department of Pediatrics, Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| | - Ami Ben Ya'acov
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Lidia Zolotaryova
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Avital Sinai
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Yoav Lichtenstein
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Olga Kryukov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel
| | - Tsiona Elkayam
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University, Beer Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University, Beer Sheva, Israel.
| | - Yaron Ilan
- Liver Unit, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Li C, Zhao S, Zhao Y, Qian Y, Li J, Yin Y. Chemically crosslinked alginate porous microcarriers modified with bioactive molecule for expansion of human hepatocellular carcinoma cells. J Biomed Mater Res B Appl Biomater 2014; 102:1648-58. [PMID: 24652712 DOI: 10.1002/jbm.b.33150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/25/2014] [Accepted: 03/06/2014] [Indexed: 11/09/2022]
Abstract
Microcarrier is an essential matrix for the large-scale culture of anchorage-dependent cells. In this study, chemical cross-linked alginate porous microcarriers (AMC) were prepared using microemulsion and freeze-drying technology. Moreover, chitosan was coated on the surface of microcarriers (AMC-CS) via electrostatic interactions to improve the mechanical strength. The size of AMC can be modulated through adjusting the concentration of alginate, amount of dispersant and stirring rate. The surface chemical characteristics and morphology of AMC-CS were evaluated by Fourier transformed infrared, X-ray photoelectron spectroscopy, and scanning electron microscope. Fibronectin (Fn) or heparin/basic fibroblast growth factor (bFGF) was then immobilized on the surface of microcarriers via layer-by-layer technology to improve the cytocompatibility. Our data suggested that the size of AMC can be accurately modulated from 90 μm to 900 μm with a narrow size distribution. Micropore structures of AMC-CS were relatively disordered and the pore size ranged between 20 μm and 100 μm. Using AMC after modified with Fn or bFGF as the cell expansion microcarriers, we showed that the proliferation rates of HepG2 cells increased significantly, reaching to more than 30-fold of cell expansion after 10 days of culture, with minor cellular damage caused by the microcarriers. Moreover, the AMC microcarriers modified with Fn or bFGF can increase albumin secretion of HepG2. We suggest that our new modified AMC-based microcarriers will be an attractive candidate for the large-scale cell culture of therapeutic cells.
Collapse
Affiliation(s)
- Chunge Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | |
Collapse
|
10
|
Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. BIOMED RESEARCH INTERNATIONAL 2013; 2013:406871. [PMID: 23991414 PMCID: PMC3749543 DOI: 10.1155/2013/406871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
Interactions between stem cells and extracellular matrix (ECM) are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS), bone marrow mesenchymal stem cells (BM-MSCs) cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.
Collapse
|
11
|
Acikgöz A, Giri S, Cho MG, Bader A. Morphological and Functional Analysis of Hepatocyte Spheroids Generated on Poly-HEMA-Treated Surfaces under the Influence of Fetal Calf Serum and Nonparenchymal Cells. Biomolecules 2013; 3:242-69. [PMID: 24970167 PMCID: PMC4030890 DOI: 10.3390/biom3010242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/16/2023] Open
Abstract
Poly (2-hydroxyethyl methacrylate) (HEMA) has been used as a clinical material, in the form of a soft hydrogel, for various surgical procedures, including endovascular surgery of liver. It is a clear liquid compound and, as a soft, flexible, water-absorbing material, has been used to make soft contact lenses from small, concave, spinning molds. Primary rat hepatocyte spheroids were created on a poly-HEMA-coated surface with the intention of inducing hepatic tissue formation and improving liver functions. We investigated spheroid formation of primary adult rat hepatocyte cells and characterized hepatic-specific functions under the special influence of fetal calf serum (FCS) and nonparencymal cells (NPC) up to six days in different culture systems (e.g., hepatocytes + FCS, hepatocytes – FCS, NPC + FCS, NPC – FCS, co-culture + FCS, co-culture – FCS) in both the spheroid model and sandwich model. Immunohistologically, we detected gap junctions, Ito cell/Kupffer cells, sinusoidal endothelial cells and an extracellular matrix in the spheroid model. FCS has no positive effect in the sandwich model, but has a negative effect in the spheroid model on albumin production, and no influence in urea production in either model. We found more cell viability in smaller diameter spheroids than larger ones by using the apoptosis test. Furthermore, there is no positive influence of the serum or NPC on spheroid formation, suggesting that it may only depend on the physical condition of the culture system. Since the sandwich culture has been considered a “gold standard” in vitro culture model, the hepatocyte spheroids generated on the poly-HEMA-coated surface were compared with those in the sandwich model. Major liver-specific functions, such as albumin secretion and urea synthesis, were evaluated in both the spheroid and sandwich model. The synthesis performance in the spheroid compared to the sandwich culture increases approximately by a factor of 1.5. Disintegration of plasma membranes in both models was measured by lactate dehydrogenase (LDH) release in both models. Additionally, diazepam was used as a substrate in drug metabolism studies to characterize the differences in the biotransformation potential with metabolite profiles in both models. It showed that the diazepam metabolism activities in the spheroid model is about 10-fold lower than the sandwich model. The poly-HEMA-based hepatocyte spheroid is a promising new platform towards hepatic tissue engineering leading to in vitro hepatic tissue formation.
Collapse
Affiliation(s)
- Ali Acikgöz
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Man-Gi Cho
- Department of Bio-Chemical Engineering, Graduate School, Dongseo University, Busan 617-716, Republic of Korea.
| | - Augustinus Bader
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|