1
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
2
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
3
|
Deng R, Kang R, Jin X, Wang Z, Liu X, Wang Q, Xie L. Mechanical stimulation promotes MSCs healing the lesion of intervertebral disc annulus fibrosus. Front Bioeng Biotechnol 2023; 11:1137199. [PMID: 36845186 PMCID: PMC9950411 DOI: 10.3389/fbioe.2023.1137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and scaffolds offer promising perspectives for annulus fibrosus (AF) repair. The repair effect was linked to features of the local mechanical environment related to the differentiation of MSCs. In this study, we established a Fibrinogen-Thrombin-Genipin (Fib-T-G) gel which is sticky and could transfer strain force from AF tissue to the human mesenchymal stem cells (hMSCs) embedded in the gel. After the Fib-T-G biological gel was injected into the AF fissures, the histology scores of intervertebral disc (IVD) and AF tissue showed that Fib-T-G gel could better repair the AF fissure in caudal IVD of rats, and increase the expression of AF-related proteins including Collagen 1 (COL1), Collagen 2 (COL2) as well as mechanotransduction-related proteins including RhoA and ROCK1. To clarify the mechanism that sticky Fib-T-G gel induces the healing of AF fissures and the differentiation of hMSCs, we further investigated the differentiation of hMSCs under mechanical strain in vitro. It was demonstrated that both AF-specific genes, including Mohawk and SOX-9, and ECM markers (COL1, COL2, aggrecan) of hMSCs were up-regulated in the environment of strain force. Moreover, RhoA/ROCK1 proteins were also found to be significantly up-regulated. In addition, we further -demonstrated that the fibrochondroinductive effect of the mechanical microenvironment process could be significantly blocked or up-regulated by inhibiting the RhoA/ROCK1 pathway or overexpressing RhoA in MSCs, respectively. Summarily, this study will provide a therapeutic alternative to repair AF tears and provide evidence that RhoA/ROCK1 is vital for hMSCs response to mechanical strain and AF-like differentiation.
Collapse
Affiliation(s)
- Rongrong Deng
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Xiaoyu Jin
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zihan Wang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Qing Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| |
Collapse
|
4
|
Panebianco CJ, Rao S, Hom WW, Meyers JH, Lim TY, Laudier DM, Hecht AC, Weir MD, Weiser JR, Iatridis JC. Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials 2022; 287:121641. [PMID: 35759923 PMCID: PMC9758274 DOI: 10.1016/j.biomaterials.2022.121641] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.
Collapse
Affiliation(s)
- Christopher J Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjna Rao
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - Warren W Hom
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James H Meyers
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Y Lim
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jennifer R Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Caldeira J, Celiz A, Newell N. A biomechanical testing method to assess tissue adhesives for annulus closure. J Mech Behav Biomed Mater 2022; 129:105150. [PMID: 35272150 DOI: 10.1016/j.jmbbm.2022.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 01/12/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
Intervertebral disc (IVD) degeneration has been linked to Low Back Pain (LBP) which affects over 80% of the population ranking first in terms of disability worldwide. Degeneration progresses with age and is often accompanied by annulus fibrosus (AF) tearing and nucleus pulposus (NP) herniation. Existing therapies fail to restore IVD function and may worsen AF defects, increasing the risk of reherniation in nearly 30% of patients. Current AF closure options are ineffective, presenting biological or mechanical limitations. Bioadhesives have potential use in this area, however methods to assess performance are limited. Herein, we propose a biomechanical testing method to assess bioadhesives' capacity to seal AF tears. Two candidate bioadhesives to seal AF tears were evaluated; a tough hydrogel adhesive, and a cyanoacrylate-based glue. The adhesion energy at the interface between bovine discs and the tough hydrogel adhesive was quantified using a peel test (n=4). An experimental method to measure the burst pressure of IVDs was then developed. This method was used to quantify the burst pressure of intact (n=7), injured (AF punctured with a 21G needle; n=7), and sealed IVDs (after applying either the tough hydrogel adhesive patch as a sealant; n=5, or the cyanoacrylate-based glue over the AF tear; n=6). The tough adhesive yielded a strong adhesion energy of 239 ± 49 J/m2 during the peel tests. A maximum pressure of 13.2 ± 3.8 MPa was observed for intact discs in the burst pressure tests, which reduced by 61.4% to 5.1 ± 1.5 MPa in the injured IVDs (p < 0.01)). Application of a cyanoacrylate-based glue to injured IVDs did not recover the burst pressure with statistical significance, however, application of the tough adhesive to injured IVDs, restored burst pressure to 12.3 ± 4.5 MPa, which was not significantly different to the intact burst pressures. In this study, a simple biomechanical method to assess the performance of bioadhesives to seal AF tears based upon burst pressure has been established. Using this method it was found that a tough hydrogel adhesive was able to seal an AF injury, such that the IVD burst pressures were similar to those measured in intact specimens. This method can be used to provide a biomechanical assessment of bioadhesives under high magnitude loading and can complement existing cyclic testing methods that are currently used to assess AF closure devices, improving their assessment before clinical use.
Collapse
Affiliation(s)
- Joana Caldeira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Adam Celiz
- Department of Bioengineering, Imperial College London, UK
| | - Nicolas Newell
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
6
|
Lumbar Intervertebral Disc Herniation: Annular Closure Devices and Key Design Requirements. Bioengineering (Basel) 2022; 9:bioengineering9020047. [PMID: 35200401 PMCID: PMC8869316 DOI: 10.3390/bioengineering9020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lumbar disc herniation is one of the most common degenerative spinal conditions resulting in lower back pain and sciatica. Surgical treatment options include microdiscectomy, lumbar fusion, total disc replacement, and other minimally invasive approaches. At present, microdiscectomy procedures are the most used technique; however, the annulus fibrosus is left with a defect that without treatment may contribute to high reherniation rates and changes in the biomechanics of the lumbar spine. This paper aims to review current commercially available products that mechanically close the annulus including the AnchorKnot® suture-passing device and the Barricaid® annular closure device. Previous studies and reviews have focused mainly on a biomimetic biomaterials approach and have described some mechanical and biological requirements for an active annular repair/regeneration strategy but are still far away from clinical implementation. Therefore, in this paper we aim to create a design specification for a mechanical annular closure strategy by identifying the most important mechanical and biological design parameters, including consideration of material selection, preclinical testing requirements, and requirements for clinical implementation.
Collapse
|
7
|
Christiani T, Mys K, Dyer K, Kadlowec J, Iftode C, Vernengo AJ. Using embedded alginate microparticles to tune the properties of in situ forming poly( N-isopropylacrylamide)-graft-chondroitin sulfate bioadhesive hydrogels for replacement and repair of the nucleus pulposus of the intervertebral disc. JOR Spine 2021; 4:e1161. [PMID: 34611588 PMCID: PMC8479524 DOI: 10.1002/jsp2.1161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Low back pain is a major public health issue associated with degeneration of the intervertebral disc (IVD). The early stages of degeneration are characterized by the dehydration of the central, gelatinous portion of the IVD, the nucleus pulposus (NP). One possible treatment approach is to replace the NP in the early stages of IVD degeneration with a hydrogel that restores healthy biomechanics while supporting tissue regeneration. The present study evaluates a novel thermosensitive hydrogel based on poly(N-isopropylacrylamide-graft-chondroitin sulfate) (PNIPAAM-g-CS) for NP replacement. The hypothesis was tested that the addition of freeze-dried, calcium crosslinked alginate microparticles (MPs) to aqueous solutions of PNIPAAm-g-CS would enable tuning of the rheological properties of the injectable solution, as well as the bioadhesive and mechanical properties of the thermally precipitated composite gel. Further, we hypothesized that the composite would support encapsulated cell viability and differentiation. Structure-material property relationships were evaluated by varying MP concentration and diameter. The addition of high concentrations (50 mg/mL) of small MPs (20 ± 6 μm) resulted in the greatest improvement in injectability, compressive mechanical properties, and bioadhesive strength of PNIPAAm-g-CS. This combination of PNIPAAM-g-CS and alginate MPs supported the survival, proliferation, and differentiation of adipose derived mesenchymal stem cells toward an NP-like phenotype in the presence of soluble GDF-6. When implanted ex vivo into the intradiscal cavity of degenerated porcine IVDs, the formulation restored the compressive and neutral zone stiffnesses to intact values and resisted expulsion under lateral bending. Overall, results indicate the potential of the hydrogel composite to serve as a scaffold for supporting NP regeneration. This work uniquely demonstrates that encapsulation of re-hydrating polysaccharide-based MPs may be an effective method for improving key functional properties of in situ forming hydrogels for orthopedic tissue engineering applications.
Collapse
Affiliation(s)
- Thomas Christiani
- Department of Biomedical Engineering, Rowan UniversityGlassboroNew JerseyUSA
| | - Karen Mys
- AO Research Institute DavosDavosSwitzerland
| | - Karl Dyer
- Department of Mechanical Engineering, Rowan UniversityGlassboroNew JerseyUSA
| | - Jennifer Kadlowec
- Department of Computer Science and Engineering, Baldwin Wallace UniversityBereaOhioUSA
| | - Cristina Iftode
- Department of Molecular and Cellular Biosciences, Rowan UniversityGlassboroNew JerseyUSA
| | - Andrea Jennifer Vernengo
- Department of Biomedical Engineering, Rowan UniversityGlassboroNew JerseyUSA
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical Engineering, Rowan UniversityGlassboroNew JerseyUSA
| |
Collapse
|
8
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
DiStefano TJ, Shmukler JO, Danias G, Iatridis JC. The Functional Role of Interface Tissue Engineering in Annulus Fibrosus Repair: Bridging Mechanisms of Hydrogel Integration with Regenerative Outcomes. ACS Biomater Sci Eng 2020; 6:6556-6586. [PMID: 33320618 PMCID: PMC7809646 DOI: 10.1021/acsbiomaterials.0c01320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain. Discectomy is the surgical standard of care to treat symptomatic herniation; however these procedures do not repair AF defects, and these lesions are a significant risk factor for recurrent herniation. Advances in tissue engineering utilize adhesive hydrogels as AF sealants; however these repair strategies have yet to progress beyond preclinical animal models because these biomaterials are often plagued by poor integration with AF tissue and lead to large variability in repair outcomes. These critical barriers to translation motivate this article to review the material composition of hydrogels that have been evaluated in situ for AF repair, proposed mechanisms of how these biomaterials interface with AF tissue, and their functional outcomes after treatment in order to inform the development of new hydrogels for AF repair. In this systematic review, we identify 18 hydrogel formulations evaluated for AF repair, all of which demonstrate large heterogeneity in their interfacing mechanisms and reported outcome measures to assess the effectiveness of repair. Hydrogels that covalently bond to AF tissue were found to be the most successful in improving IVD biomechanical properties from the injured state, but none were able to restore properties to the intact state suggesting that new repair strategies with innovative surface chemistries are an important future direction. We additionally review biomechanical evaluation methods and recommend standardization in the field of AF tissue engineering to establish mechanical benchmarks for translation and ensure clinical feasibility.
Collapse
Affiliation(s)
- Tyler J DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jennifer O Shmukler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
10
|
Alexeev D, Cui S, Grad S, Li Z, Ferguson SJ. Mechanical and biological characterization of a composite annulus fibrosus repair strategy in an endplate delamination model. JOR Spine 2020; 3:e1107. [PMID: 33392447 PMCID: PMC7770194 DOI: 10.1002/jsp2.1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
This study compares the mechanical response of the commonly used annulus fibrosus (AF) puncture injury model of the intervertebral disc (IVD) and a newly proposed AF failure at the endplate junction (delamination) on ex vivo bovine IVDs. Biocompatibility and mechanics of a newly developed repair strategy comprising of electrospun polycaprolactone (PCL) scaffold and fibrin-genipin (FibGen) adhesive was tested on the delamination model. The study found no significant difference in the mechanical response to compressive loading between the two models. Primary goals of the repair strategy to create a tight seal on the damage area and restore mechanical properties, while showing minimal cytotoxicity, were broadly achieved. Postrepair, the IVDs showed a significant restoration of mechanical properties compared to the injured samples for the delamination model. The FibGen glue showed a limited toxicity in the AF and produced a resilient and mechanically stable seal on the damaged area.
Collapse
Affiliation(s)
| | - Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Sibylle Grad
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
- AO Research Institute DavosDavosSwitzerland
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | | |
Collapse
|
11
|
Tarafder S, Park GY, Felix J, Lee CH. Bioadhesives for musculoskeletal tissue regeneration. Acta Biomater 2020; 117:77-92. [PMID: 33031966 DOI: 10.1016/j.actbio.2020.09.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Natural or synthetic materials designed to adhere to biological components, bioadhesives, have received significant attention in clinics and surgeries. As a result, there are several commercially available, FDA-approved bioadhesives used for skin wound closure, hemostasis, and sealing tissue gaps or cracks in soft tissues. Recently, the application of bioadhesives has been expanded to various areas including musculoskeletal tissue engineering and regenerative medicine. The instant establishment of a strong adhesion force on tissue surfaces has shown potential to augment repair of connective tissues. Bioadhesives have also been applied to secure tissue grafts to host bodies and to fill or seal gaps in musculoskeletal tissues caused by injuries or degenerative diseases. In addition, the injectability equipped with the instant adhesion formation may provide the great potential of bioadhesives as vehicles for localized delivery of cells, growth factors, and small molecules to facilitate tissue healing and regeneration. This review covers recent research progress in bioadhesives as focused on their applications in musculoskeletal tissue repair and regeneration. We also discuss the advantages and outstanding challenges of bioadhesives, as well as the future perspective toward regeneration of connective tissues with high mechanical demand.
Collapse
|
12
|
Fujii K, Lai A, Korda N, Hom WW, Evashwick-Rogler TW, Nasser P, Hecht AC, Iatridis JC. Ex-vivo biomechanics of repaired rat intervertebral discs using genipin crosslinked fibrin adhesive hydrogel. J Biomech 2020; 113:110100. [PMID: 33142205 DOI: 10.1016/j.jbiomech.2020.110100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Microdiscectomy is the current standard surgical treatment for intervertebral disc (IVD) herniation, however annulus fibrosus (AF) defects remain unrepaired which can alter IVD biomechanical properties and lead to reherniation, IVD degeneration and recurrent back pain. Genipin-crosslinked fibrin (FibGen) hydrogel is an injectable AF sealant previously shown to partially restore IVD motion segment biomechanical properties. A small animal model of herniation and repair is needed to evaluate repair potential for early-stage screening of IVD repair strategies prior to more costly large animal and eventual human studies. This study developed an ex-vivo rat caudal IVD herniation model and characterized torsional, axial tension-compression and stress relaxation biomechanical properties before and after herniation injury with or without repair using FibGen. Injury group involved an annular defect followed by removal of nucleus pulposus tissue to simulate a severe herniation while Repaired group involved FibGen injection. Injury significantly altered axial range of motion, neutral zone, torsional stiffness, torque range and stress-relaxation biomechanical parameters compared to Intact. FibGen repair restored the stress-relaxation parameters including effective hydraulic permeability indicating it effectively sealed the IVD defect, and there was a trend for improved tensile stiffness and axial neutral zone length. This study demonstrated a model for studying IVD herniation injury and repair strategies using rat caudal IVDs ex-vivo and demonstrated FibGen sealed IVDs to restore water retention and IVD pressurization. This ex-vivo small animal model may be modified for future in-vivo studies to screen IVD repair strategies using FibGen and other IVD repair biomaterials as an augment to additional large animal and human IVD testing.
Collapse
Affiliation(s)
- Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Alon Lai
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nimrod Korda
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Warren W Hom
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Thomas W Evashwick-Rogler
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Philip Nasser
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
13
|
Virk S, Chen T, Meyers KN, Lafage V, Schwab F, Maher SA. Comparison of biomechanical studies of disc repair devices based on a systematic review. Spine J 2020; 20:1344-1355. [PMID: 32092506 PMCID: PMC9063717 DOI: 10.1016/j.spinee.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A variety of solutions have been suggested as candidates for the repair of the annulus fibrosis (AF), with the ability to withstand physiological loads of paramount importance. PURPOSE The objective of our study was to capture the scope of biomechanical test models of AF repairs. We hypothesized that common test parameters would emerge. STUDY DESIGN Systematic Review METHODS: PubMed and EMBASE databases were searched for studies in English including the keywords "disc repair AND animal models," "disc repair AND cadaver spines," "intervertebral disc AND biomechanics," and "disc repair AND biomechanics." This list was further limited to those studies which included biomechanical results from annular repair in animal or human spinal segments from the cervical, thoracic, lumbar and/or coccygeal (tail) segments. For each study, the method used to measure the biomechanical property and biomechanical test results were documented. RESULTS A total of 2,607 articles were included within our initial analysis. Twenty-two articles met our inclusion criteria. Significant variability in terms of species tested, measurements used to quantify annular repair strength, and the method/direction/magnitude that forces were applied to a repaired annulus were found. Bovine intervertebral disc was most commonly used model (6 of 22 studies) and the most common mechanical property reported was the force required for failure of the disc repair device (15 tests). CONCLUSIONS Our hypothesis was rejected; no common features were identified across AF biomechanical models and as a result it was not possible to compare results of preclinical testing of annular repair devices. Our analysis suggests that a standardized biomechanical model that can be repeatably executed across multiple laboratories is required for the mechanical screening of candidates for AF repair. CLINICAL SIGNIFICANCE This literature review provides a summary of preclinical testing of annular repair devices for clinicians to properly evaluate the safety/efficacy of developing technology designed to repair annular defects after disc herniations.
Collapse
Affiliation(s)
- Sohrab Virk
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Tony Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY,Department of Biomechanics, Hospital for Special Surgery, New York, USA
| | | | - Virginie Lafage
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York
| | - Frank Schwab
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York
| | - Suzanne A. Maher
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY,Department of Biomechanics, Hospital for Special Surgery, New York, USA
| |
Collapse
|
14
|
Panebianco C, DiStefano T, Mui B, Hom W, Iatridis J. Crosslinker concentration controls TGFβ-3 release and annulus fibrosus cell apoptosis in genipin-crosslinked fibrin hydrogels. Eur Cell Mater 2020; 39:211-226. [PMID: 32396210 PMCID: PMC7372750 DOI: 10.22203/ecm.v039a14] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Back pain is a leading cause of global disability associated with intervertebral disc (IVD) pathologies. Discectomy alleviates disabling pain caused by IVD herniation without repairing annulus fibrosus (AF) defects, which can cause accelerated degeneration and recurrent pain. Biological therapies show promise for IVD repair but developing high-modulus biomaterials capable of providing biomechanical stabilisation and delivering biologics remains an unmet challenge. The present study identified critical factors and developed an optimal formulation to enhance the delivery of AF cells and transforming growth beta-3 (TGFβ-3) in genipin-crosslinked fibrin (FibGen) hydrogels. Part 1 showed that AF cells encapsulated in TGFβ-3-supplemented high-modulus FibGen synthesised little extracellular matrix (ECM) but could release TGFβ-3 at physiologically relevant levels. Part 2 showed that AF cells underwent apoptosis when encapsulated in FibGen, even after reducing fibrin concentration from 70 to 5 mg/mL. Mechanistic experiments, modifying genipin concentration and integrin binding site presence demonstrated that genipin crosslinking caused AF cell apoptosis by inhibiting cell-biomaterial binding. Adding integrin binding sites with fibronectin partially rescued apoptosis, indicating genipin also caused acute cytotoxicity. Part 3 showed that FibGen formulations with 1 mg/mL genipin had enhanced ECM synthesis when supplemented with fibronectin and TGFβ-3. In conclusion, FibGen could be used for delivering biologically active compounds and AF cells, provided that formulations supplied additional sites for cell-biomaterial binding and genipin concentrations were low. Results also highlighted a need for developing strategies that protect cells against acute crosslinker cytotoxicity to overcome challenges of engineering high-modulus cell carriers for musculoskeletal tissues that experience high mechanical demands.
Collapse
Affiliation(s)
| | | | | | | | - J.C. Iatridis
- Address for correspondence: James C. Iatridis, PhD, 1468 Madison Avenue-Annenberg Building, floor 20, Room A20-086, New York, 10029 NY, USA., Telephone number: +1 2122411517
| |
Collapse
|
15
|
Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, Richards RG, Alini M, Grad S, Li Z. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. Cartilage 2020; 11:169-180. [PMID: 29582673 PMCID: PMC7097979 DOI: 10.1177/1947603518764263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To explore if chemokine (C-C motif) ligand 5 (CCL5) delivery could recruit annulus fibrosus (AF) cells to the injury sites and facilitate the repair of ruptured AF. DESIGN The effects of CCL5 on bovine AF cells in vitro were tested by transwell assay and quantitative real-time polymerase chain reaction. Fibrin gel containing CCL5 was used to treat annulotomized bovine caudal discs cultured under dynamic loading conditions. After 14 days of loading, the samples were collected for histological examination. A pilot animal study was performed using sheep cervical discs to investigate the effect of fibrin gel encapsulated with CCL5 for the treatment of ruptured AF. After 14 weeks, the animals were sacrificed, and the discs were scanned with magnetic resonance imaging before histopathological examination. RESULTS CCL5 showed a chemotactic effect on AF cells in a dose-dependent manner. AF cells cultured with CCL5 in vitro did not show any change of the gene expression of CCL5 receptors, catabolic and proinflammatory markers. In vitro release study showed that CCL5 exhibited sustained release from the fibrin gel into the culture media; however, in the organ culture study CCL5 did not stimulate homing of AF cells toward the defect sites. The pilot animal study did not show any repair effect of CCL5. CONCLUSIONS CCL5 has a chemotactic effect on AF cells in vitro, but no ex vivo or in vivo regenerative effect when delivered within fibrin gel. Further study with a stronger chemotactic agent and/or an alternate biomaterial that is more conductive of cell migration is warranted.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- AO Research Institute Davos, Davos, Switzerland
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Stephan Zeiter
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Tanja Schmid
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Daisuke Sakai
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Department of Orthopaedic Surgery, Surgical Science and Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - James C. Iatridis
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - R. Geoff Richards
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Du J, Long R, Nakai T, Sakai D, Benneker L, Zhou G, Li B, Eglin D, Iatridis J, Alini M, Grad S, Li Z. Functional cell phenotype induction with TGF-β1 and collagen-polyurethane scaffold for annulus fibrosus rupture repair. Eur Cell Mater 2020; 39:1-17. [PMID: 31899537 PMCID: PMC7027376 DOI: 10.22203/ecm.v039a01] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Appropriate cell sources, bioactive factors and biomaterials for generation of functional and integrated annulus fibrosus (AF) tissue analogues are still an unmet need. In the present study, the AF cell markers, collagen type I, cluster of differentiation 146 (CD146), mohawk (MKX) and smooth muscle protein 22α (SM22α) were found to be suitable indicators of functional AF cell induction. In vitro 2D culture of human AF cells showed that transforming growth factor β1 (TGF-β1) upregulated the expression of the functional AF markers and increased cell contractility, indicating that TGF-β1-pre-treated AF cells were an appropriate cell source for AF tissue regeneration. Furthermore, a tissue engineered construct, composed of polyurethane (PU) scaffold with a TGF-β1-supplemented collagen type I hydrogel and human AF cells, was evaluated with in vitro 3D culture and ex vivo preclinical bioreactor-loaded organ culture models. The collagen type I hydrogel helped maintaining the AF functional phenotype. TGF-β1 supplement within the collagen I hydrogel further promoted cell proliferation and matrix production of AF cells within in vitro 3D culture. In the ex vivo IVD organ culture model with physiologically relevant mechanical loading, TGF-β1 supplement in the transplanted constructs induced the functional AF cell phenotype and enhanced collagen matrix synthesis. In conclusion, TGF-β1-containing collagen-PU constructs can induce the functional cell phenotype of human AF cells in vitro and in situ. This combined cellular, biomaterial and bioactive agent therapy has a great potential for AF tissue regeneration and rupture repair.
Collapse
Affiliation(s)
- J. Du
- AO Research Institute Davos, Davos, Switzerland
| | - R.G. Long
- AO Research Institute Davos, Davos, Switzerland,Icahn School of Medicine at Mount Sinai, New York, USA,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - T. Nakai
- Tokai University School of Medicine, Isehara, Japan,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - D. Sakai
- Tokai University School of Medicine, Isehara, Japan,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - L.M. Benneker
- Inselspital, University of Bern, Bern, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - G. Zhou
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Centre, Shenzhen University, Shenzhen, China
| | - B. Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - D. Eglin
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - J.C. Iatridis
- Icahn School of Medicine at Mount Sinai, New York, USA,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - M. Alini
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - S. Grad
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland
| | - Z. Li
- AO Research Institute Davos, Davos, Switzerland,Collaborative Research Program Annulus Fibrosus Repair, AO Foundation, Davos, Switzerland,Address for correspondence: Zhen Li, PhD, AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland. Telephone number: +41 814142325
| |
Collapse
|
17
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
18
|
Jiang EY, Sloan SR, Wipplinger C, Kirnaz S, Härtl R, Bonassar LJ. Proteoglycan removal by chondroitinase ABC improves injectable collagen gel adhesion to annulus fibrosus. Acta Biomater 2019; 97:428-436. [PMID: 31425894 DOI: 10.1016/j.actbio.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) herniations are currently treated with interventions that leave the IVD with persistent lesions prone to further herniations. Annulus fibrosus (AF) repair has become of interest as a method to seal defects in the IVD and prevent reherniation, but this requires strong adhesion of the implanted biomaterial to the native AF tissue. Our group has previously developed a high-density collagen (HDC) gel for AF repair and tested its efficacy in vivo, but its adhesion to the AF could be improved. Increased cell adhesion to cartilage has previously been reported through chondroitinase ABC (ChABC) digestion, which removes proteoglycans and increases access to cell binding motifs. Such approaches could also increase biomaterial adhesion to tissue, but the effects of ChABC digestion on AF have yet to be investigated. In this study, ovine AF tissue was digested with either 10 U/mL ChABC or saline for up to 10 min and the effect of this treatment on collagen adhesion between AF tissue samples was investigated by histology and mechanical testing in a lap-shear configuration. ChABC digestion removed proteoglycans within the AF in a time-dependent fashion and enhanced adhesion of the HDC gel to the AF. ChABC digestion increased the elastic toughness and total shear energy of the HDC gel-AF interface by 88% and 46% respectively. ChABC treatment enhanced the adhesion of the HDC gel to the AF without significantly decreasing native AF cell viability. Thus, ChABC digestion is a viable method to improve adhesion of biomaterials for AF repair. STATEMENT OF SIGNIFICANCE: Intervertebral disc herniations are currently treated with interventions that leave persistent lesions in the annulus fibrosus that are prone to further herniations. Annular repair is a promising method to seal lesions and prevent reherniation, but requires strong adhesion of the implanted biomaterial to native annulus fibrosus. Since large proteoglycans like aggrecan occupy regions of the extracellular matrix between collagen fibers in the annulus fibrosus, we hypothesized that removing proteoglycans via chondroitinase digestion would increase the adhesion of annular repair hydrogels. This investigation demonstrated that chondroitinase removed proteoglycans within annulus fibrosus tissue, enhanced the interaction of an injected collagen gel with the native tissue, and mechanically improved adhesion between the collagen gel and annulus fibrosus. This is the first study of its kind to evaluate the biochemical and mechanical effects of short-term chondroitinase digestion on annulus fibrosus tissue.
Collapse
|
19
|
Agnol LD, Dias FTG, Nicoletti NF, Marinowic D, Moura E Silva S, Marcos-Fernandez A, Falavigna A, Bianchi O. Polyurethane tissue adhesives for annulus fibrosus repair: Mechanical restoration and cytotoxicity. J Biomater Appl 2019; 34:673-686. [PMID: 31354030 DOI: 10.1177/0885328219864901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas Dall Agnol
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | | | - Daniel Marinowic
- 4 Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sidnei Moura E Silva
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,5 Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Asdrubal Falavigna
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,3 Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Otávio Bianchi
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,2 Materials Science Graduate Program (PGMAT), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,7 Federal University of Rio Grande do Sul, Materials engineering department, Porto Alegre, Brazil
| |
Collapse
|
20
|
Hom WW, Tschopp M, Lin HA, Nasser P, Laudier DM, Hecht AC, Nicoll SB, Iatridis JC. Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity. PLoS One 2019; 14:e0217357. [PMID: 31136604 PMCID: PMC6538241 DOI: 10.1371/journal.pone.0217357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers.
Collapse
Affiliation(s)
- Warren W. Hom
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melanie Tschopp
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Huizi A. Lin
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - Philip Nasser
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Damien M. Laudier
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven B. Nicoll
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Demina NB, Chernova LV, Kozlova ZM. [Application of adhesive compositions in surgery (in Russian only)]. Khirurgiia (Mosk) 2019:129-134. [PMID: 30938368 DOI: 10.17116/hirurgia2019031129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New adhesive compositions will almost completely prevent leakage of surgical sutures and undue tissue damage, improve healing and postoperative rehabilitation. At present time there is no universal type of bioadhesives that is suitable for all tissues and types of sutures because of various surgeries and their specificity. The article describes the advantages and disadvantages of all common types of bioadhesives, as well as the ways to overcome their disadvantages.
Collapse
Affiliation(s)
- N B Demina
- Institute of Pharmacy of Sechenov First State Medical University, Moscow, Russia, Chair of Pharmaceutical Technology, Moscow, Russia
| | - L V Chernova
- Institute of Pharmacy of Sechenov First State Medical University, Moscow, Russia, Chair of Pharmaceutical Technology, Moscow, Russia
| | - Zh M Kozlova
- Institute of Pharmacy of Sechenov First State Medical University, Moscow, Russia, Chair of Pharmaceutical Technology, Moscow, Russia
| |
Collapse
|
22
|
Gupta N, Cruz MA, Nasser P, Rosenberg JD, Iatridis JC. Fibrin-Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction. Ann Otol Rhinol Laryngol 2019; 128:640-646. [PMID: 30862177 DOI: 10.1177/0003489419836667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Nasal reconstruction is limited by the availability of autologous cartilage. The aim is to investigate an adhesive biomaterial for tissue engineering of nasal cartilage by evaluating mechanical properties of hydrogels made of fibrin crosslinked with genipin as compared to native tissue. METHODS Hydrogels of fibrin, fibrin-genipin, and fibrin-genipin with extracellular matrix (ECM) particles were created and evaluated with mechanical testing to determine compression, tensile, and shear properties. Rabbit nasal septal cartilage was harvested and tested in these modalities for comparison. Transmission electron microscopy characterized hydrogel structure. RESULTS Fibrin-genipin gels had higher compressive, tensile, and shear moduli compared to fibrin alone or fibrin-genipin with ECM. However, all hydrogel formulations had lower moduli than the rabbit nasal septal cartilage. Electron microscopy showed genipin crosslinking increased structural density of the hydrogel and that cartilage ECM created larger structural features with lower crosslinking density. CONCLUSION The addition of genipin significantly improved mechanical properties of fibrin hydrogels by increasing the compressive, tensile, and shear moduli. The addition of cartilage ECM, which can add native structure and composition, resulted in decreased moduli values. Fibrin-genipin is a bioactive and biomechanically stable hydrogel that may offer promise as a scaffold for cartilage tissue engineering in nasal reconstruction, yet further augmentation is required to match material properties of native nasal cartilage.
Collapse
Affiliation(s)
- Nikita Gupta
- 1 Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,2 Department of Otolaryngology-Head and Neck Surgery, University of Kentucky Medical Center, Lexington, KY, USA
| | - Michelle A Cruz
- 3 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- 3 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D Rosenberg
- 1 Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- 3 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Scheibler AG, Götschi T, Widmer J, Holenstein C, Steffen T, Camenzind RS, Snedeker JG, Farshad M. Feasibility of the annulus fibrosus repair with in situ gelating hydrogels - A biomechanical study. PLoS One 2018; 13:e0208460. [PMID: 30521633 PMCID: PMC6283563 DOI: 10.1371/journal.pone.0208460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
The surgical standard of care for lumbar discectomy leaves the annulus fibrosus (AF) defect unrepaired, despite considerable risk for a recurrent herniation. Identification of a viable defect repair strategy has until now been elusive. The scope of this ex vivo biomechanical study was to evaluate crosslinking hydrogels as potentially promising AF defect sealants, and provide a baseline for their use in combination with collagen scaffolds that restore disc volume. This study directly compared genipin crosslinked fibrin hydrogel (FibGen) as a promising preclinical candidate against a clinically available adhesive composed of glutaraldehyde and albumin (BioGlue). Forty-two bovine coccygeal functional spine units (FSU) were randomly allocated into four groups, namely untreated (control, n = 12), repaired with either one of the tested hydrogels (BioGlue, n = 12; FibGen, n = 12), or FibGen used in combination with a collagen hydrogel scaffold (FibGen+Scaffold, n = 6). All specimens underwent a moderate mechanical testing protocol in intact, injured and repaired states. After completion of the moderate testing protocol, the samples underwent a ramp-to-failure test. Lumbar discectomy destabilized the FSU as quantified by increased torsional range of motion (28.0° (19.1, 45.1) vs. 41.39° (27.3, 84.9), p<0.001), torsional neutral zone (3.1° (1.2, 7.7) vs. 4.8° (2.1, 12.1), Z = -3.49, p < 0.001), hysteresis(24.4 J (12.8, 76.0) vs. 27.6 J (16.4, 54.4), Z = -2.61, p = 0.009), with loss of both disc height (7.0 mm (5.0, 10.5) vs 6.1 mm (4.0, 9.3), Z = -5.16, p < 0.001) and torsional stiffness (0.76 Nmdeg-1 (0.38, 1.07) vs. 0.66 Nmdeg-1 (0.38, 0.97), Z = -3.98, p < 0.001). Most FibGen repaired AF endured the entire testing procedure whereas only a minority of BioGlue repaired AF and all FibGen+Scaffold repaired AF failed (6/10 vs. 3/12 vs. 0/6 respectively, p = 0.041). Both BioGlue and FibGen+Scaffold repaired AF partially restored disc height (0.47 mm (0.07, 2.41), p = 0.048 and 1.52 mm (0.41, 2.57), p = 0.021 respectively) compared to sham treatment (0.08 mm (-0.63, 0.88)) whereas FibGen-only repaired AF had no such effect (0.04 mm (-0.73, 1.13), U = 48.0, p = 1). The AF injury model demonstrated considerable change of FSU mechanics that could be partially restored by use of an AF sealant. While inclusion of a volumetric collagen scaffold led to repair failure, use of FibGen alone demonstrated clinically relevant promise for prevention of mechanical reherniation, outperforming an FDA approved sealant in this ex vivo test series.
Collapse
Affiliation(s)
- Anne-Gita Scheibler
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jonas Widmer
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Claude Holenstein
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Thomas Steffen
- Musculoskeletal Research Unit (MSRU), Center for Applied Biotechnology & Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Roland S. Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
24
|
Yang JJ, Li F, Hung KC, Hsu SH, Wang JL. Intervertebral disc needle puncture injury can be repaired using a gelatin–poly (γ-glutamic acid) hydrogel: an in vitro bovine biomechanical validation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2631-2638. [DOI: 10.1007/s00586-018-5727-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|
25
|
Frauchiger DA, May RD, Bakirci E, Tekari A, Chan SCW, Wöltje M, Benneker LM, Gantenbein B. Genipin-Enhanced Fibrin Hydrogel and Novel Silk for Intervertebral Disc Repair in a Loaded Bovine Organ Culture Model. J Funct Biomater 2018; 9:E40. [PMID: 29937524 PMCID: PMC6163705 DOI: 10.3390/jfb9030040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Intervertebral disc (IVD) repair represents a major challenge. Using functionalised biomaterials such as silk combined with enforced hydrogels might be a promising approach for disc repair. We aimed to test an IVD repair approach by combining a genipin-enhanced fibrin hydrogel with an engineered silk scaffold under complex load, after inducing an injury in a bovine whole organ IVD culture; (2) Methods: Bovine coccygeal IVDs were isolated from ~1-year-old animals within four hours post-mortem. Then, an injury in the annulus fibrosus was induced by a 2 mm biopsy punch. The repair approach consisted of genipin-enhanced fibrin hydrogel that was used to fill up the cavity. To seal the injury, a Good Manufacturing Practise (GMP)-compliant engineered silk fleece-membrane composite was applied and secured by the cross-linked hydrogel. Then, IVDs were exposed to one of three loading conditions: no load, static load and complex load in a two-degree-of-freedom bioreactor for 14 days. Followed by assessing DNA and matrix content, qPCR and histology, the injured discs were compared to an uninjured control IVD that underwent the same loading profiles. In addition, the genipin-enhanced fibrin hydrogel was further investigated with respect to cytotoxicity on human stem cells, annulus fibrosus, and nucleus pulposus cells; (3) Results: The repair was successful as no herniation could be detected for any of the three loading conditions. Disc height was not recovered by the repair DNA and matrix contents were comparable to a healthy, untreated control disc. Genipin resulted being cytotoxic in the in vitro test but did not show adverse effects when used for the organ culture model; (4) Conclusions: The current study indicated that the combination of the two biomaterials, i.e., genipin-enhanced fibrin hydrogel and an engineered silk scaffold, was a promising approach for IVD repair. Furthermore, genipin-enhanced fibrin hydrogel was not suitable for cell cultures; however, it was highly applicable as a filler material.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
| | - Rahel D May
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
| | - Ezgi Bakirci
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
| | - Adel Tekari
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia.
| | - Samantha C W Chan
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, 01062 Dresden, Germany.
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Spine Unit, Insel Hospital, Bern University Hospital, Bern 3010, Switzerland.
| | - Benjamin Gantenbein
- Tissue & Organ Mechano Biology, Institute for Surgical Technology and Biomechanics, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
26
|
Cruz MA, McAnany S, Gupta N, Long RG, Nasser P, Eglin D, Hecht AC, Illien-Junger S, Iatridis JC. Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks. J Biomech Eng 2018; 139:2625781. [PMID: 28464119 DOI: 10.1115/1.4036623] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Annulus fibrosus (AF) defects from intervertebral disk (IVD) herniation and degeneration are commonly associated with back pain. Genipin-crosslinked fibrin hydrogel (FibGen) is an injectable, space-filling AF sealant that was optimized to match AF shear properties and partially restored IVD biomechanics. This study aimed to enhance mechanical behaviors of FibGen to more closely match AF compressive, tensile, and shear properties by adjusting genipin crosslink density and by creating a composite formulation by adding Poly(D,L-lactide-co-glycolide) (PDLGA). This study also evaluated effects of thrombin concentration and injection technique on gelation kinetics and adhesive strength. Increasing FibGen genipin concentration from 1 to 36 mg/mL significantly increased adhesive strength (∼5 to 35 kPa), shear moduli (∼10 to 110 kPa), and compressive moduli (∼25 to 150 kPa) with concentration-dependent effects, and spanning native AF properties. Adding PDLGA to FibGen altered the material microstructure on electron microscopy and nearly tripled adhesive strength, but did not increase tensile moduli, which remained nearly 5× below native AF, and had a small increase in shear moduli and significantly decreased compressive moduli. Increased thrombin concentration decreased gelation rate to < 5 min and injection methods providing a structural FibGen cap increased pushout strength by ∼40%. We conclude that FibGen is highly modifiable with tunable mechanical properties that can be formulated to be compatible with human AF compressive and shear properties and gelation kinetics and injection techniques compatible with clinical discectomy procedures. However, further innovations, perhaps with more efficient fiber reinforcement, will be required to enable FibGen to match AF tensile properties.
Collapse
Affiliation(s)
- Michelle A Cruz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Steven McAnany
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Nikita Gupta
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1189, New York, NY 10029
| | - Rose G Long
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Philip Nasser
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - David Eglin
- Biomaterials and Tissue Engineering, AO Research Institute Davos, Davos CH-7270, Switzerland
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Svenja Illien-Junger
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029 e-mail:
| |
Collapse
|
27
|
Cruz MA, Hom WW, DiStefano TJ, Merrill R, Torre OM, Lin HA, Hecht AC, Illien-Junger S, Iatridis JC. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng Part A 2018; 24:187-198. [PMID: 29214889 DOI: 10.1089/ten.tea.2017.0334] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defects in the annulus fibrosus (AF) of intervertebral discs allow nucleus pulposus tissue to herniate causing painful disability. Microdiscectomy procedures remove herniated tissue fragments, but unrepaired defects remain allowing reherniation or progressive degeneration. Cell therapies show promise to enhance repair, but methods are undeveloped and carriers are required to prevent cell leakage. To address this challenge, this study developed and evaluated genipin-crosslinked fibrin (FibGen) as an adhesive cell carrier optimized for AF repair that can deliver cells, match AF material properties, and have low risk of extrusion during loading. Part 1 determined that feasibility of bovine AF cells encapsulated in high concentration FibGen (F140G6: 140 mg/mL fibrinogen; 6 mg/mL genipin) for 7 weeks could maintain high viability, but had little proliferation or matrix deposition. Part 2 screened tissue mechanics and in situ failure testing of nine FibGen formulations (fibrin: 35-140 mg/mL; genipin: 1-6 mg/mL). F140G6 formulation matched AF shear and compressive properties and significantly improved failure strength in situ. Formulations with reduced genipin also exhibited satisfactory material properties and failure behaviors warranting further biological screening. Part 3 screened AF cells encapsulated in four FibGen formulations for 1 week and found that reduced genipin concentrations increased cell viability and glycosaminoglycan production. F70G1 (70 mg/mL fibrinogen; 1 mg/mL genipin) demonstrated balanced biological and biomechanical performance warranting further testing. We conclude that FibGen has potential to serve as an adhesive cell carrier to repair AF defects with formulations that can be tuned to enhance biomechanical and biological performance; future studies are required to develop strategies to enhance matrix production.
Collapse
Affiliation(s)
- Michelle A Cruz
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Warren W Hom
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Tyler J DiStefano
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Robert Merrill
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Olivia M Torre
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Huizi A Lin
- 2 Department of Biomedical Engineering, The City College of New York , New York, New York
| | - Andrew C Hecht
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Svenja Illien-Junger
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| | - James C Iatridis
- 1 Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
28
|
van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res 2017; 21:22. [PMID: 29085662 PMCID: PMC5651638 DOI: 10.1186/s40824-017-0106-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main body Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion Several innovative avenues for tackling intervertebral disc degeneration are being reported – from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.
Collapse
Affiliation(s)
- Sebastião van Uden
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,Present Address: Bioengineering Laboratories Srl, Viale Brianza 8, Meda, Italy.,Present Address: Politecnico di Milano, Piazza Leonardo da Vinci, 32 Milan, Italy
| | - Joana Silva-Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| |
Collapse
|
29
|
Long RG, Rotman SG, Hom WW, Assael DJ, Illien-Jünger S, Grijpma DW, Iatridis JC. In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair. J Tissue Eng Regen Med 2017; 12:e727-e736. [PMID: 27860368 DOI: 10.1002/term.2356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Abstract
Herniated intervertebral discs (IVDs) are a common cause of back and neck pain. There is an unmet clinical need to seal annulus fibrosus (AF) defects, as discectomy surgeries address acute pain but are complicated by reherniation and recurrent pain. Copolymers of polyethylene glycol with trimethylene carbonate (TMC) and hexamethylene diisocyanate (HDI) end-groups were formulated as AF sealants as the HDI form covalent bonds with native AF tissue. TMC adhesives were evaluated and optimized using the design criteria: stable size, strong adherence to AF tissue, high cytocompatibility, restoration of IVD biomechanics to intact levels following in situ repair, and low extrusion risk. TMC adhesives had high adhesion strength as assessed with a pushout test (150 kPa), and low degradation rates over 3 weeks in vitro. Both TMC adhesives had shear moduli (220 and 490 kPa) similar to, but somewhat higher than, AF tissue. The adhesive with three TMC moieties per branch (TMC3) was selected for additional in situ testing because it best matched AF shear properties. TMC3 restored torsional stiffness, torsional hysteresis area and axial range of motion to intact states. However, in a failure test of compressive deformation under fixed 5 ° flexion, some herniation risk was observed with failure strength of 5.9 MPa compared with 13.5 MPa for intact samples; TMC3 herniated under cyclic organ culture testing. These TMC adhesives performed well during in vitro and in situ testing, but additional optimization to enhance failure strength is required to further this material to advanced screening tests, such as long-term degradation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rose G Long
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - Stijn G Rotman
- Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands
| | - Warren W Hom
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan J Assael
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Svenja Illien-Jünger
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dirk W Grijpma
- Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland.,Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands.,Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| |
Collapse
|
30
|
Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017; 129:54-67. [PMID: 28324865 DOI: 10.1016/j.biomaterials.2017.03.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders.
Collapse
Affiliation(s)
- Robert D Bowles
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lori A Setton
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
31
|
Nikkhoo M, Wang JL, Abdollahi M, Hsu YC, Parnianpour M, Khalaf K. A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies. Proc Inst Mech Eng H 2016; 231:127-137. [PMID: 28019241 DOI: 10.1177/0954411916681597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Degenerative disc disease, associated with discrete structural changes in the peripheral annulus and vertebral endplate, is one of the most common pathological triggers of acute and chronic low back pain, significantly depreciating an individual's quality of life and instigating huge socioeconomic costs. Novel emerging therapeutic techniques are hence of great interest to both research and clinical communities alike. Exogenous crosslinking, such as Genipin, and platelet-rich plasma therapies have been recently demonstrated encouraging results for the repair and regeneration of degenerated discs, but there remains a knowledge gap regarding the quantitative degree of effectiveness and particular influence on the mechanical properties of the disc. This study aimed to investigate and quantify the material properties of intact (N = 8), trypsin-denatured (N = 8), Genipin-treated (N = 8), and platelet-rich plasma-treated (N = 8) discs in 32 porcine thoracic motion segments. A poroelastic finite element model was used to describe the mechanical properties during different treatments, while a meta-model analytical approach was used in combination with ex vivo experiments to extract the poroelastic material properties. The results revealed that both Genipin and platelet-rich plasma are able to recover the mechanical properties of denatured discs, thereby affording promising therapeutic modalities. However, platelet-rich plasma-treated discs fared slightly, but not significantly, better than Genipin in terms of recovering the glycosaminoglycans content, an essential building block for healthy discs. In addition to investigating these particular degenerative disc disease therapies, this study provides a systematic methodology for quantifying the detailed poroelastic mechanical properties of intervertebral disc.
Collapse
Affiliation(s)
- Mohammad Nikkhoo
- 1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jaw-Lin Wang
- 2 Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Masoud Abdollahi
- 3 Laboratory of Wearable Technologies & Neuromusculoskeletal Research, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yu-Chun Hsu
- 2 Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Mohamad Parnianpour
- 3 Laboratory of Wearable Technologies & Neuromusculoskeletal Research, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kinda Khalaf
- 4 Department of Biomedical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, UAE
| |
Collapse
|
32
|
Long RG, Torre OM, Hom WW, Assael DJ, Iatridis JC. Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair. J Biomech Eng 2016; 138:021007. [PMID: 26720265 DOI: 10.1115/1.4032353] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 02/02/2023]
Abstract
There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation.
Collapse
|
33
|
Li Z, Lang G, Chen X, Sacks H, Mantzur C, Tropp U, Mader KT, Smallwood TC, Sammon C, Richards RG, Alini M, Grad S. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials 2016; 84:196-209. [DOI: 10.1016/j.biomaterials.2016.01.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
|
34
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Long RG, Bürki A, Zysset P, Eglin D, Grijpma DW, Blanquer SBG, Hecht AC, Iatridis JC. Mechanical restoration and failure analyses of a hydrogel and scaffold composite strategy for annulus fibrosus repair. Acta Biomater 2016; 30:116-125. [PMID: 26577987 DOI: 10.1016/j.actbio.2015.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. STATEMENT OF SIGNIFICANCE Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.
Collapse
Affiliation(s)
- Rose G Long
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - Alexander Bürki
- Institute for Surgical Technology & Biomechanics, University of Bern, Bern, Switzerland
| | - Philippe Zysset
- Institute for Surgical Technology & Biomechanics, University of Bern, Bern, Switzerland
| | - David Eglin
- AO Research Institute Davos, Davos, Switzerland; Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - Dirk W Grijpma
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland; University of Twente, Department of Biomaterials Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, PO Box 196, 9700 AD Groningen, The Netherlands
| | - Sebastien B G Blanquer
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland; University of Twente, Department of Biomaterials Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland.
| |
Collapse
|
36
|
O'Connell GD, Leach JK, Klineberg EO. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation. Biores Open Access 2015; 4:431-45. [PMID: 26634189 PMCID: PMC4652242 DOI: 10.1089/biores.2015.0034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine.
Collapse
Affiliation(s)
- Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| | - Eric O. Klineberg
- Department of Orthopedic Surgery, University of California, Davis Medical Center, Davis, California
| |
Collapse
|
37
|
Likhitpanichkul M, Kim Y, Torre OM, See E, Kazezian Z, Pandit A, Hecht AC, Iatridis JC. Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug. Spine J 2015; 15:2045-54. [PMID: 25912501 PMCID: PMC4550557 DOI: 10.1016/j.spinee.2015.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Intervertebral discs (IVDs) are attractive targets for local drug delivery because they are avascular structures with limited transport. Painful IVDs are in a chronic inflammatory state. Although anti-inflammatories show poor performance in clinical trials, their efficacy treating IVD cells suggests that sustained, local drug delivery directly to painful IVDs may be beneficial. PURPOSE The purpose of this study was to determine if genipin cross-linked fibrin (FibGen) with collagen Type I hollow spheres (CHS) can serve as a drug-delivery carrier for infliximab, the anti-tumor necrosis factor α (TNFα) drug. Infliximab was chosen as a model drug because of the known role of TNFα in increasing downstream production of several pro-inflammatory cytokines and pain mediators. Genipin cross-linked fibrin was used as drug carrier because it is adhesive, injectable, and slowly degrading hydrogel with the potential to seal annulus fibrosus (AF) defects. CHS allow simple and nondamaging drug loading and could act as a drug reservoir to improve sustained delivery. STUDY DESIGN/SETTING This is a study of biomaterials and human AF cell culture to determine drug release kinetics and efficacy. METHODS Infliximab was delivered at low and high concentrations using FibGen with and without CHS. Gels were analyzed for structure, drug release kinetics, and efficacy treating human AF cells after release. RESULTS Fibrin showed rapid infliximab drug release but degraded quickly. CHS alone showed a sustained release profile, but the small spheres may not remain in a degenerated IVD with fissures. Genipin cross-linked fibrin showed steady and low levels of infliximab release that was increased when loaded with higher drug concentrations. Infliximab was bound in CHS when delivered within FibGen and was only released after enzymatic degradation. The infliximab released over 20 days retained its bioactivity as confirmed by the sustained reduction of interleukin (IL)-1β, IL-6, IL-8, and TNFα concentrations produced by AF cells. CONCLUSIONS Direct mixing of infliximab into FibGen was the simplest drug-loading protocol capable of sustained release. Results show feasibility of using drug-loaded FibGen for delivery of infliximab and, in the context with the literature, show potential to seal AF defects and partially restore IVD biomechanics. Future investigations are required to determine if drug-loaded FibGen can effectively deliver drugs, seal AF defects, and promote IVD repair or prevent further IVD degeneration in vivo.
Collapse
Affiliation(s)
- Morakot Likhitpanichkul
- Leni & Peter W. May Dept of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Collaborative Research Partner, Annulus Fibrosus Rupture Program, AO Foundation, Davos, Switzerland
| | - Yesul Kim
- Leni & Peter W. May Dept of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M Torre
- Leni & Peter W. May Dept of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eugene See
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Zepur Kazezian
- Collaborative Research Partner, Annulus Fibrosus Rupture Program, AO Foundation, Davos, Switzerland,Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- Collaborative Research Partner, Annulus Fibrosus Rupture Program, AO Foundation, Davos, Switzerland,Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Andrew C Hecht
- Leni & Peter W. May Dept of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Collaborative Research Partner, Annulus Fibrosus Rupture Program, AO Foundation, Davos, Switzerland.
| |
Collapse
|
38
|
Colombini A, Lopa S, Ceriani C, Lovati AB, Croiset SJ, Di Giancamillo A, Lombardi G, Banfi G, Moretti M. In Vitro Characterization and In Vivo Behavior of Human Nucleus Pulposus and Annulus Fibrosus Cells in Clinical-Grade Fibrin and Collagen-Enriched Fibrin Gels. Tissue Eng Part A 2015; 21:793-802. [DOI: 10.1089/ten.tea.2014.0279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Alessandra Colombini
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Cristina Ceriani
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Samantha J. Croiset
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
39
|
A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials 2014; 42:11-9. [PMID: 25542789 DOI: 10.1016/j.biomaterials.2014.11.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 01/07/2023]
Abstract
Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue.
Collapse
|
40
|
Likhitpanichkul M, Dreischarf M, Illien-Junger S, Walter BA, Nukaga T, Long RG, Sakai D, Hecht AC, Iatridis JC. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests. Eur Cell Mater 2014; 28:25-37; discussion 37-8. [PMID: 25036053 PMCID: PMC4409328 DOI: 10.22203/ecm.v028a03] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation.
Collapse
Affiliation(s)
- M. Likhitpanichkul
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - M. Dreischarf
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - S. Illien-Junger
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - B. A. Walter
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T. Nukaga
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland,Department of Orthopaedic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - R. G Long
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland
| | - D. Sakai
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland,Department of Orthopaedic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - A. C. Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J. C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation, Davos, Switzerland,Address for correspondence: James C. Iatridis, PhD, Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box1188, New York, NY 10029, USA, Telephone Number: 1-212-241-1517, FAX Number: 1-212-876-3168,
| |
Collapse
|