1
|
A detailed quantitative outcome measure of glycosaminoglycans in human articular cartilage for cell therapy and tissue engineering strategies. Osteoarthritis Cartilage 2015. [PMID: 26211607 DOI: 10.1016/j.joca.2015.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Ideally, cartilage regenerative cell therapy should produce a tissue which closely matches the microstructure of native cartilage. Benchmark reference information is necessary to assess the quality of engineered cartilage. Our goal was to examine the variation in glycosaminoglycans (GAGs) in cartilage zones within human knee joints of different ages. DESIGN Osteochondral biopsies were removed from the medial femoral condyles of deceased persons aged 20-50 years. Fluorophore-Assisted Carbohydrate Electrophoresis (FACE) was used to profile GAGs through the superficial, middle and deep zones of the articular cartilage. Differences were identified by statistical analysis. RESULTS Cartilage from the younger biopsies had 4-fold more hyaluronan in the middle zone than cartilage from the older biopsies. The proportion of hyaluronan decreased with increasing age. Cartilage from the middle and deep zones of younger biopsies had significantly more chondroitin sulphate and keratan sulphate than the cartilage from older biopsies. This would suggest that chondrocytes synthesise more sulphated GAGs when deeper in the tissue and therefore in conditions of hypoxia. With increasing age, there was significantly more chondroitin-6 sulphate than chondroitin-4 sulphate. For the first time, unsulphated chondroitin was detected in the superficial zone. CONCLUSIONS As an outcome measure, FACE offers the potential of a complete, detailed assessment of all GAGs and offers more information that the widely used 1,9-dimethylmethylene blue (DMMB) dye assay. FACE could be very useful in the evolving cartilage regeneration field.
Collapse
|
2
|
Juhász T, Szentléleky E, Somogyi CS, Takács R, Dobrosi N, Engler M, Tamás A, Reglődi D, Zákány R. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures. Int J Mol Sci 2015; 16:17344-67. [PMID: 26230691 PMCID: PMC4581197 DOI: 10.3390/ijms160817344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Chondrocytes/metabolism
- Embryonic Stem Cells/metabolism
- Hedgehog Proteins/metabolism
- Oncogene Proteins/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Signal Transduction
- Stress, Mechanical
- Trans-Activators/metabolism
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Tamás Juhász
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Eszter Szentléleky
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Csilla Szűcs Somogyi
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Nóra Dobrosi
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Máté Engler
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Andrea Tamás
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Dóra Reglődi
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| |
Collapse
|
3
|
Heck TAM, Wilson W, Foolen J, Cilingir AC, Ito K, van Donkelaar CC. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction. J Biomech 2014; 48:823-31. [PMID: 25560271 DOI: 10.1016/j.jbiomech.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 02/02/2023]
Abstract
Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.
Collapse
Affiliation(s)
- T A M Heck
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A C Cilingir
- Mechanical Engineering Department, Sakarya University, Sakarya, Turkey
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|